A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A framework for combining a motion atlas with non-motion information to learn clinically useful biomarkers: Application to cardiac resynchronisation therapy response prediction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a framework for combining a cardiac motion atlas with non-motion data. The atlas represents cardiac cycle motion across a number of subjects in a common space based on rich motion descriptors capturing 3D displacement, velocity, strain and strain rate. The non-motion data are derived from a variety of sources such as imaging, electrocardiogram (ECG) and clinical reports. Once in the atlas space, we apply a novel supervised learning approach based on random projections and ensemble learning to learn the relationship between the atlas data and some desired clinical output. We apply our framework to the problem of predicting response to Cardiac Resynchronisation Therapy (CRT). Using a cohort of 34 patients selected for CRT using conventional criteria, results show that the combination of motion and non-motion data enables CRT response to be predicted with 91.2% accuracy (100% sensitivity and 62.5% specificity), which compares favourably with the current state-of-the-art in CRT response prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2016.10.002DOI Listing

Publication Analysis

Top Keywords

non-motion data
12
framework combining
8
motion atlas
8
atlas non-motion
8
cardiac resynchronisation
8
resynchronisation therapy
8
response prediction
8
crt response
8
motion
5
atlas
5

Similar Publications