98%
921
2 minutes
20
Iron oxyhydroxide nanoparticles (Fe-NPs) are natural vectors of phosphate (PO) in the environment. Their mobility is determined by colloidal stability, which is affected by surface composition. This might be manipulated in engineered NPs for environmental or agricultural applications. Here, the stability of PO-Fe-NPs (HFO/goethite) was determined across contrasting environmental conditions (pH, Ca concentration) and by using fulvates (FA) and polyphosphates (poly-P's) as coatings. The PO-Fe-NPs are unstable at Ca concentrations above 0.1 mM. Addition of FA and some poly-P's significantly improved stability. Zeta potential explained colloidal stability across treatments; surface charge was calculated with surface complexation models and explained for phytic acid (PA) and hexametaphosphate (HMP) by a partial (1-4 of the 6 PO units) adsorption to the surface, while the remaining PO units stayed in solution. This study suggests that Ca concentration mainly affects the mobility of natural or engineered PO-Fe-NPs and that HMP is a promising agent for increasing colloidal stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.6b02425 | DOI Listing |
Nature
September 2025
Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Amino acids (AAs) have a long history of being used as stabilizers for biological media. For example, they are important components in biomedical formulations. The effect of AAs on biological systems is also starting to be appreciated.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2025
Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada. Electronic address:
This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2025
Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China. Electronic address:
Multiple stretchable gels with conductivity have been thoroughly prepared in diverse solvents historically to modulate their superlative properties in a multitude of applications, such as soft robotics, wearable devices, and e-skins. Eutectogels are considered as an emerging class of gels that combine the best features of both hydrogels and organogels, including environmental friendliness, thermal stability and customizable nature. Eutectogels, composed of deep eutectic solvents (DES) immobilized within different matrices, not only inherit the merits of DES, but also show some additional properties derived from the special structure and compositions, which are conducive to development potential.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. Electronic address:
Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as powerful tools in nanomedicine owing to their heavy-metal-free composition, distinct magnetic properties, biocompatibility, and customizable surface chemistry. While traditionally employed as T-weighted MRI contrast agents, recent innovations have enabled the development of ultra-small SPIONs-such as exceedingly small SPIONs (ES-SPIONs) and single-nanometer iron oxide nanoparticles (SNIOs)-that offer T-weighted MRI capabilities, which are favored by radiologists for their superior anatomical clarity. This review highlights the synthesis of monodisperse SPIONs via thermal decomposition and controlled oxidation, as well as their functionalization with zwitterionic dopamine sulfonate (ZDS) ligands, which confer colloidal stability, minimal protein adsorption, and efficient renal clearance.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:
Polyimide (PI) faces significant challenges in highly integrated and high-frequency electronic devices due to its inherently low thermal conductivity and relatively high dielectric constant (D). In this study, topologically micro-crosslinked PI films were synthesized by incorporating highly conjugated multi-amino polydiacetylene (MAPDA) into a fluorinated PI matrix. The unique alkene-alkyne alternating conjugated structure of MAPDA, combined with the strong electron-withdrawing trifluoromethyl groups in the matrix, promotes charge redistribution and reduces the dipole moment and polarizability.
View Article and Find Full Text PDF