Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Astrocytes have recently been shown to provide physiological support for various brain functions, although little is known about their involvement in white matter integrity. Several inherited infantile-onset leukoencephalopathies, such as Alexander disease and megalencephalic leukoencephalopathy with subcortical cysts (MLC), implicate astrocytic involvement in the formation of white matter. Several mouse models of MLC had been generated by knocking out the Mlc1 gene; however, none of those models was reported to show myelin abnormalities prior to formation of the myelin sheath. Here we generated a new Mlc1 knockout mouse and a Mlc1 overexpressing mouse, and demonstrate that astrocyte-specific Mlc1 overexpression causes infantile-onset abnormalities of the white matter in which astrocytic swelling followed by myelin membrane splitting are present, whereas knocking out Mlc1 does not, and only shows myelin abnormalities after 12 months of age. Biochemical analyses demonstrated that MLC1 interacts with the Na /K ATPase and that overexpression of Mlc1 results in decreased activity of the astrocytic Na /K pump. In contrast, no changes in Na /K pump activity were observed in Mlc1 KO mice, suggesting that the reduction in Na /K pump activity resulting from Mlc1 overexpression causes astrocytic swelling. Our infantile-onset leukoencephalopathy model based on Mlc1 overexpression may provide an opportunity to further explore the roles of astrocytes in white matter development and structural integrity. We established a novel mouse model for infantile-onset leukoencephalopathy by the overexpression of Mlc1. Mlc1 overexpression reduced activity of the astrocytic sodium pump, which may underlie white matter edema followed by myelin membrane splitting. GLIA 2016 GLIA 2017;65:150-168.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23084DOI Listing

Publication Analysis

Top Keywords

white matter
20
mlc1 overexpression
16
infantile-onset leukoencephalopathy
12
mlc1
12
mouse model
8
knocking mlc1
8
myelin abnormalities
8
astrocytic swelling
8
myelin membrane
8
membrane splitting
8

Similar Publications

Chikungunya virus (CHIKV) typically causes febrile illness and arthralgia. However, severe complications such as encephalitis, rhabdomyolysis, and multiorgan dysfunction are increasingly recognised, particularly during epidemics in endemic regions. We report a case of a 61-year old male presenting with progressive flaccid paraparesis and respiratory failure following febrile illness.

View Article and Find Full Text PDF

The Role of Neuroglia in Cognitive Longevity.

Neurochem Res

September 2025

International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.

The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.

View Article and Find Full Text PDF

Cerebral Amyloid Angiopathy, a common age-related small vessel disease leading to hemorrhagic stroke, shares many characteristics with Alzheimer's disease: toxic amyloid deposits, microvascular alterations and enlarged perivascular spaces (EPVS). Together, PVS enlargement, reduced amyloid-β clearance and further accumulation form a vicious cycle underlying disease progression. Yet, the neuropathological correlates of EPVS, including the associated angioarchitecture, are poorly understood.

View Article and Find Full Text PDF

Mechanistic Insights and Translational Therapeutics of Neurovascular Unit Dysregulation in Vascular Cognitive Impairment.

J Integr Neurosci

August 2025

Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, 211166 Nanjing, Jiangsu, China.

Cognitive impairment represents a progressive neurodegenerative condition with severity ranging from mild cognitive impairment (MCI) to dementia and exerts significant burdens on both individuals and healthcare systems. Vascular cognitive impairment (VCI) represents a heterogeneous clinical continuum, spanning a spectrum from subcortical ischemic VCI (featuring small vessel disease, white matter lesions, and lacunar infarcts) to mixed dementia, where vascular and Alzheimer's-type pathologies coexist. While traditionally linked to macro- and microvascular dysfunction, the mechanisms underlying VCI remain complex.

View Article and Find Full Text PDF

Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.

View Article and Find Full Text PDF