98%
921
2 minutes
20
Nanotechnology has provided powerful tools to improve the chemotherapy of cancer. Different nanostructures have been developed which deliver the anticancer drugs more selectively to tumor than to healthy tissues. The result has generally been the increase in efficacy and safety of classical anticancer drugs. In recent years, several studies have focused not only on the delivery of anticancer drugs to tumors, but also on delivering the drugs to specific organelles of cancer cells. Endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, and nucleus have been the targets of different nanostructured drug delivery systems developed with the goal of circumventing drugresistance, increasing drug efficacy, and so on. So far, the results described in the literature show that this strategy may be used to improve chemotherapy outcomes. In this review a discussion is presented on the strategies described in the literature to deliver anticancer drugs to specific organelles of cancer cells by using nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389557516666161013104554 | DOI Listing |
Drug Dev Res
September 2025
School of Pharmacy, The University of Jordan, Amman, Jordan.
Cancer treatment faces challenges like nonselective toxicity and drug resistance, prompting the need for innovative therapies. This study aimed to develop liposomal formulations for co-delivery of empagliflozin and rutin, evaluating their anticancer and antioxidant efficacy. PEGylated empagliflozin-loaded nanoliposomes (Empa-NLs) and empagliflozin-rutin co-loaded nanoliposomes (Empa-Rut NLs) were synthesized using the thin-film hydration technique.
View Article and Find Full Text PDFNAR Cancer
September 2025
Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
Personalized treatment selection is crucial for cancer patients due to the high variability in drug response. While actionable mutations can increasingly inform treatment decisions, most therapies still rely on population-based approaches. Here, we introduce neural interaction explainable AI (NeurixAI), an explainable and highly scalable deep learning framework that models drug-gene interactions and identifies transcriptomic patterns linked with drug response.
View Article and Find Full Text PDFOncol Res
September 2025
Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
Objectives: Hepatocellular carcinoma (HCC) is among the most frequently occurring malignant tumors of the digestive tract and is associated with an increased mortality rate worldwide. This study aimed to develop and validate a prognostic model based on immunogenic cell death (ICD)-related genes to predict patient survival and guide individualized treatment strategies for HCC.
Methods: ICD-related genes were identified from the GeneCards database using a relevance score threshold of >10.
Oncol Res
September 2025
Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, 00133, Italy.
Mesothelioma is a rare and aggressive cancer with a poor prognosis and limited therapeutic options. Despite recent advances, conventional treatment approaches remain largely ineffective due to late diagnosis, chemoresistance and immunosuppressive tumor microenvironment. This review reports the latest studies on combination therapies for mesothelioma, focusing on the potential of integrating chemotherapeutic agents, molecularly targeted agents, vaccines and natural bioactive compounds such as polyphenols.
View Article and Find Full Text PDFCureus
September 2025
Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, JPN.
Introduction Oral squamous cell carcinoma (OSCC), which is the most common cancer type in head and neck cancers, remains a serious health problem because of its high mortality. Treatment of OSCC is mainly performed with a combination of surgery and anticancer agents. However, despite the recent development of anticancer agents, the clinical outcome of OSCC has yet to be improved.
View Article and Find Full Text PDF