98%
921
2 minutes
20
Aurora kinase (AUR) is a well-known mitotic serine/threonine kinase that regulates centromere formation, chromosome segregation, and cytokinesis in eukaryotes. In addition to regulating mitotic events, AUR has been shown to regulate protein dynamics during interphase in animal cells. In contrast, there has been no identification and characterization of substrates and/or interacting proteins during interphase in plants. The Arabidopsis thaliana genome encodes three AUR paralogues, AtAUR1, AtAUR2, and AtAUR3. Among them, AtAUR1 and AtAUR2 are considered to function redundantly. Here, we confirmed that both AtAUR1 and AtAUR3 are localized in the nucleus and cytoplasm during interphase, suggesting that they have functions during interphase. To identify novel interacting proteins, we used AlphaScreen to target 580 transcription factors (TFs) that are mainly functional during interphase, using recombinant A. thaliana TFs and AtAUR1 or AtAUR3. We found 133 and 32 TFs had high potential for interaction with AtAUR1 and AtAUR3, respectively. The highly AtAUR-interacting TFs were involved in various biological processes, suggesting the functions of the AtAURs during interphase. We found that AtAUR1 and AtAUR3 showed similar interaction affinity to almost all TFs. However, in some cases, the interaction affinity differed substantially between the two AtAUR homologues. These results suggest that AtAUR1 and AtAUR3 have both redundant and distinct functions through interactions with TFs. In addition, database analysis revealed that most of the highly AtAUR-interacting TFs contained a detectable phosphopeptide that was consistent with the consensus motifs for human AURs, suggesting that these TFs are substrates of the AtAURs. The AtAURs phosphorylated several highly interacting TFs in the AlphaScreen in vitro. Overall, in line with the regulation of TFs through interaction, our results indicate the possibility of phosphoregulation of several TFs by the AtAURs (280/300).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10265-016-0860-x | DOI Listing |
J Plant Res
November 2016
Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Aurora kinase (AUR) is a well-known mitotic serine/threonine kinase that regulates centromere formation, chromosome segregation, and cytokinesis in eukaryotes. In addition to regulating mitotic events, AUR has been shown to regulate protein dynamics during interphase in animal cells. In contrast, there has been no identification and characterization of substrates and/or interacting proteins during interphase in plants.
View Article and Find Full Text PDFPlant Cell Physiol
February 2007
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
Aurora kinases play a key role in chromosome segregation and cytokinesis. In plants, three Aurora kinases (AtAUR1-AtAUR3) have been identified in Arabidopsis thaliana. Here, we report an AtAUR2 splicing variant (AtAUR2S), which lacks the fourth exon encoding a part of the kinase domain of AtAUR2.
View Article and Find Full Text PDFPlant Mol Biol
May 2005
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, 565-0871, Suita, Osaka, Japan.
The Aurora kinase family is a well-characterized serine/threonine protein kinase family that regulates different processes of mitotic events. Although functions of animal and yeast Aurora kinases have been analyzed, plant aurora kinases were not identified and characterized. We identified three Aurora kinase orthologs in Arabidopsis thaliana and designated these as AtAUR1, AtAUR2, and AtAUR3.
View Article and Find Full Text PDF