A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Non-invasive epicutaneous vaccine against Respiratory Syncytial Virus: Preclinical proof of concept. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To put a Respiratory Syncytial Virus (RSV) vaccine onto the market, new vaccination strategies combining scientific and technical innovations need to be explored. Such a vaccine would also need to be adapted to the vaccination of young children that are the principal victims of acute RSV infection. In the present project, we describe the development and the preclinical evaluation of an original epicutaneous RSV vaccine that combines two technologies: Viaskin® epicutaneous patches as a delivery platform and RSV N-nanorings (N) as a subunit antigen. Such a needle-free vaccine may have a better acceptability for the vaccination of sensible population such as infants since it does not require any skin preparation. Moreover, this self-applicative vaccine would overcome some issues associated to injectable vaccines such as the requirement of sterile medical devices, the need of skilled health-care professionals and the necessity of stringent store conditions. Here, we demonstrate that Viaskin® patches loaded with a formulation containing N-nanorings (Viaskin®-N) are highly immunogenic in mice and promotes a Th1/Th17 oriented immune response. More importantly, Viaskin®-N epicutaneous vaccine confers a high level of protection against viral replication upon RSV challenge in mice, without exacerbating clinical symptoms. In swine, which provides the best experimental model for the transcutaneous passage of drug/antigen in human skin, we have shown that GFP fluorescent N-nanorings, delivered epicutaneously with Viaskin® patches, are taken up by epidermal Langerhans cells. We have also demonstrated that Viaskin®-N induced a significant RSV N-specific T-cell response in pig. In conclusion, Viaskin®-N epicutaneous vaccine seems efficient to protect against RSV infection in animal model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.10.003DOI Listing

Publication Analysis

Top Keywords

epicutaneous vaccine
12
vaccine
8
respiratory syncytial
8
syncytial virus
8
rsv vaccine
8
rsv infection
8
viaskin® patches
8
viaskin®-n epicutaneous
8
rsv
7
non-invasive epicutaneous
4

Similar Publications