98%
921
2 minutes
20
Plants synthesize specialized metabolites which possess extremely important ecological functions including direct defense, indirect defense, and signaling. The optimal defense theory (ODT) proposes that defensive metabolites are preferentially allocated to the tissues with high fitness value or in locations that are easily injured. In our present study, using the model plant Nicotiana benthamiana, we found that direct defense of N. benthamiana against Spodoptera litura (Fabricius) larvae showed spatial differences in the sites producing defensive chemicals. The upper leaves possessed significantly stronger direct defense ability than the middle and lower leaves. Interestingly, the strong defense ability of the upper leaves was not due to occurrences of well-known defensive metabolites such as nicotine and chlorogenic acid. After damage, the middle and lower leaves emitted higher amounts of (Z)-3-hexen-1-ol than the upper leaves, which could both attract larvae and significantly increase the amount of middle and lower leaf eaten by the larvae. The spatial difference in (Z)-3-hexen-1-ol emission may be due to spatial differences in expression of lipoxygenase (NbLOX2), which is responsible for the formation and emission of (Z)-3-hexen-1-ol. This study provided new insight into ODT, showing that plants effectively protect easily injured tissues through reduction in concentration of herbivore-feeding stimulant in the tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2016.08.016 | DOI Listing |
This study examines Mexico's fertility transition (1930-2015) and how socioeconomic status (SES), geography, and indigeneity shaped reproductive behaviors. Using net fertility-the number of surviving children under five-we assess how prestige bias (adopting high-status fertility norms) and conformism bias (aligning with local norms) influenced change across distinct population groups. We introduce the time, space, and population model to analyze the combined effects of macrostructural forces, spatial diffusion, and individual decision-making.
View Article and Find Full Text PDFF1000Res
September 2025
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK.
Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.
View Article and Find Full Text PDFJ Orthop Res
September 2025
Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany.
Osteoporotic hip fractures are a considerable cause of pain and disability particularly among the elderly. Osteoporosis causes loss of bone stability, which in turn leads to an increased risk of fractures especially in metaphyseal bone. Moreover, the body's capacity for healing is diminished, resulting in prolonged recovery times following these fractures.
View Article and Find Full Text PDFMagn Reson Med Sci
September 2025
Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany.
Purpose: The ability to accurately detect and characterize intramammary micro- and macrocalcifications without ionized radiation has significant clinical implications for early breast cancer assessment. The aim of this prospective study was to investigate the feasibility of detecting intramammary calcifications using 3D multi-echo gradient echo (ME-GRE) magnitude and true susceptibility-weighted images (tSWI) compared to digital mammography (DM) in patients with different breast sizes and densities of breast parenchyma at 1.5T.
View Article and Find Full Text PDFJ Safety Res
September 2025
Department of Civil Engineering, College of Engineering Trivandrum, Thiruvananthapuram, Kerala, India. Electronic address:
Introduction: Traffic signals are the controlling devices aimed to reduce crossing conflicts at intersections. However, rear-end and lane-changing conflicts at signalized intersection approaches are a significant problem. This work aims to proactively assess and spatially map the safety and risk at signalized intersection approaches by field data collection and microsimulation modeling using PTV-VISSIM.
View Article and Find Full Text PDF