98%
921
2 minutes
20
In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2016.09.004 | DOI Listing |
Mov Disord Clin Pract
September 2025
Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
Background: GBA1 variants are the major genetic risk factor for Parkinson's Disease (PD) and account for 5-30% of PD cases depending on the population and age at onset of the disease.
Objectives: The aim of this study was to assess whether Artificial Intelligence (AI) could predict GBA1-mutated genotype in PD (GBA1-PD). Particularly, the main objective was to identify a Machine Learning (ML) model capable of accurately providing a pre-test estimate of GBA1-mutated status, relying on the clinical and demographic variables with the highest predictive value.
Prog Mol Biol Transl Sci
September 2025
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:
Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.
View Article and Find Full Text PDFJ Biomech
September 2025
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland. Electronic address:
Alterations in skeletal muscle morphology and composition are critical factors in cerebral palsy (CP), including changes in passive stiffness and in belly and fascicle lengths. In this study, we quantified the relative contributions of muscle and tendon to passive stiffness across the ankle range of motion in individuals with CP and typically developing (TD) peers. We also investigated morphological factors underlying increased muscle stiffness.
View Article and Find Full Text PDFMed Sci Sports Exerc
September 2025
Department of Engineering Mechanics, Tsinghua University, Beijing, CHINA.
Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.
Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.
J Chem Phys
September 2025
Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.
View Article and Find Full Text PDF