Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

Med Image Anal

Institut de Recherche Technologique b-com, Rennes, France; INSA de Rennes, France; IRISA, Rennes, France.

Published: January 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2016.09.004DOI Listing

Publication Analysis

Top Keywords

motion estimation
8
real-time target
4
target tracking
4
tracking soft
4
soft tissues
4
ultrasound
4
tissues ultrasound
4
ultrasound images
4
images based
4
based robust
4

Similar Publications

Artificial Intelligence Predicts GBA1 Mutated Status in Parkinson's Disease Patients.

Mov Disord Clin Pract

September 2025

Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.

Background: GBA1 variants are the major genetic risk factor for Parkinson's Disease (PD) and account for 5-30% of PD cases depending on the population and age at onset of the disease.

Objectives: The aim of this study was to assess whether Artificial Intelligence (AI) could predict GBA1-mutated genotype in PD (GBA1-PD). Particularly, the main objective was to identify a Machine Learning (ML) model capable of accurately providing a pre-test estimate of GBA1-mutated status, relying on the clinical and demographic variables with the highest predictive value.

View Article and Find Full Text PDF

Characterization of skeletal muscle contraction using a flexible and wearable ultrasonic sensor.

Prog Mol Biol Transl Sci

September 2025

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:

Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.

View Article and Find Full Text PDF

Alterations in skeletal muscle morphology and composition are critical factors in cerebral palsy (CP), including changes in passive stiffness and in belly and fascicle lengths. In this study, we quantified the relative contributions of muscle and tendon to passive stiffness across the ankle range of motion in individuals with CP and typically developing (TD) peers. We also investigated morphological factors underlying increased muscle stiffness.

View Article and Find Full Text PDF

Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.

Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.

View Article and Find Full Text PDF

The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.

View Article and Find Full Text PDF