Understanding regulation of leaf internal carbon and water transport using online stable isotope techniques.

New Phytol

Centre for Carbon, Water and Food, the University of Sydney, 380 Werombi Road, Brownlow Hill, Sydney, NSW, 2570, Australia.

Published: January 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

83 I. 83 II. 84 III. 84 IV. 85 V. 86 VI. 86 VII. 86 87 References 87 SUMMARY: The balance of carbon dioxide (CO ) and water vapour exchange between leaves and the atmosphere is strongly controlled by stomatal conductance. However, the influence of transport processes within leaves has recently been gaining prominence. Stable isotope techniques are at the forefront of understanding transport within leaves and the recent development of online, real-time optical isotope analysers has paved the way for new questions to be asked. In this insight, I outline these new techniques and the questions they can potentially address, including assessing possible coordination between mesophyll conductance to CO and leaf hydraulic conductance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.14171DOI Listing

Publication Analysis

Top Keywords

stable isotope
8
isotope techniques
8
understanding regulation
4
regulation leaf
4
leaf internal
4
internal carbon
4
carbon water
4
water transport
4
transport online
4
online stable
4

Similar Publications

Trees harbor large stores of nonstructural carbohydrates, some of which are quite old (> 10 yr), yet we know little of how these older stores may be used for woody growth. Crucially, the use of old carbohydrates during cellulose biosynthesis could confound climate reconstructions that rely on tree ring stable isotope ratios. We analyzed tree-ring cellulose ΔC and δC in earlywood of two pine species from montane forests in western North America using tree rings produced during the radiocarbon bomb pulse (1966-1980).

View Article and Find Full Text PDF

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF

The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.

View Article and Find Full Text PDF

The structure of amyloid-β (1-42) oligomers in membrane-mimetic environments.

Spectrochim Acta A Mol Biomol Spectrosc

August 2025

Department of Biochemistry and Biophysics, Stockholm University, Sweden. Electronic address:

Aggregation of the amyloid-β peptide (Aβ) characterises and probably causes Alzheimer's disease. While lipid-mediated Aβ aggregation has been extensively studied for the 40-residue variant Aβ40, the interaction of the 42-residue variant Aβ42 with membranes has received less attention. Our time-resolved infrared spectra demonstrate that Aβ42 oligomers preserve their β-sheet structure in aqueous solution also in a membrane-mimicking environment consisting of either 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (POPC, zwitterionic) or 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'racglycerol) (POPG, anionic) vesicles.

View Article and Find Full Text PDF

Metabolization of the two most abundant polysaccharides, cellulose and chitin, by an extreme generalist insect, the American cockroach.

J Insect Physiol

September 2025

Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel. Electronic address:

Cellulose and chitin are the two most abundant polysaccharides on Earth. To digest these structural carbohydrates, herbivorous and omnivorous insects typically rely on cellulases, while insectivorous species often express chitinases. The American cockroach (Periplaneta americana), an extreme generalist omnivore, is known to thrive on a variety of diets.

View Article and Find Full Text PDF