Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Poor air quality is one of the most important environmental problems in many large cities of the world, which can cause a wide range of acute and chronic health effects, including partial physiological disorders and cardiac death due to respiratory and cardiovascular diseases. According to the latest edition of the national standard for air quality, maximum contamination level is 15 μg/m(3) per year and 35 μg/m(3) per day. The aim of this study was to evaluate cardiovascular, respiratory, and total mortality attributed to PM2.5 in the city of Mashhad during 2013. To this end, the Air Q model was used to assess health impacts of PM2.5 and human exposure to it. In this model, the attributable proportion of health outcome, annual number of excess cases of mortality for all causes, and cardiovascular and respiratory diseases were estimated. The results showed that the number of excess cases of mortality for all causes and cardiovascular and respiratory diseases attributable to PM2.5 was 32, 263, and 332 μg/m(3), respectively. Moreover, the annual average of PM2.5 in Mashhad was obtained to be 37.85 μg/m(3). This study demonstrated that a high percentage of mortality resulting from this pollutant could be due to the high average concentration of PM2.5 in the city during 2013. In this case, using the particle control methods, such as optimal use of fuel, management of air quality in urban areas, technical inspection of vehicles, faster development of public transport, and use of industrial technology can be effective in reducing air pollution in cities and turning existing situations into preferred ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-016-5574-y | DOI Listing |