A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A C-terminal amphipathic helix is necessary for the in vivo tubule-shaping function of a plant reticulon. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reticulons (RTNs) are a class of endoplasmic reticulum (ER) membrane proteins that are capable of maintaining high membrane curvature, thus helping shape the ER membrane into tubules. The mechanism of action of RTNs is hypothesized to be a combination of wedging, resulting from the transmembrane topology of their conserved reticulon homology domain, and scaffolding, arising from the ability of RTNs to form low-mobility homo-oligomers within the membrane. We studied the plant RTN isoform RTN13, which has previously been shown to locate to ER tubules and the edges of ER cisternae and to induce constrictions in ER tubules when overexpressed, and identified a region in the C terminus containing a putative amphipathic helix (APH). Here we show that deletion of this region or disruption of the hydrophobic face of the predicted helix abolishes the ability of RTN13 to induce constrictions of ER tubules in vivo. These mutants, however, still retain their ability to interact and form low-mobility oligomers in the ER membrane. Hence, our evidence indicates that the conserved APH is a key structural feature for RTN13 function in vivo, and we propose that RTN, like other membrane morphogens, rely on APHs for their function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047209PMC
http://dx.doi.org/10.1073/pnas.1605434113DOI Listing

Publication Analysis

Top Keywords

amphipathic helix
8
form low-mobility
8
induce constrictions
8
constrictions tubules
8
membrane
6
c-terminal amphipathic
4
helix vivo
4
vivo tubule-shaping
4
tubule-shaping function
4
function plant
4

Similar Publications