98%
921
2 minutes
20
Plant responses to water deficit involve complex molecular mechanisms in which transcription factors have key roles. Previous reports ectopically overexpressed a few members of the homeodomain-leucine zipper I (HD-Zip I) family of transcription factors from different species, and the obtained transgenic plants exhibited drought tolerance which extent depended on the level of overexpression, triggering diverse molecular and physiological pathways. Here we show that most HD-Zip I genes are regulated by drought in the vegetative and/or reproductive stages. Moreover, uncharacterized members of this family were expressed as transgenes both in Col-0 and rdr6-12 backgrounds and were able to enhance drought tolerance in host plants. The extent of such tolerance depended on the expression level of the transgene and was significantly higher in transgenic rdr6-12 than in Col-0. Comparative transcriptome analyses of Arabidopsis thaliana plants overexpressing HD-Zip I proteins indicated that many members have common targets. Moreover, the water deficit tolerance exhibited by these plants is likely due to the induction and repression of certain of these common HD-Zip I-regulated genes. However, each HD-Zip I member regulates other pathways, which, in some cases, generate differential and potentially undesirable traits in addition to drought tolerance. In conclusion, only a few members of this family could become valuable tools to improve drought-tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2016.03.004 | DOI Listing |
EMBO Mol Med
September 2025
State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
Cardiac fibrosis contributes to adverse cardiac remodeling and loss of heart function eventually leading to heart failure (HF). Resident cardiac fibroblasts are the principal source of myofibroblasts that produce extracellular matrix proteins to mediate cardiac fibrosis. We report that TET3 depletion in cultured cardiac fibroblasts blocked transition to myofibroblasts in response to different pro-fibrogenic stimuli.
View Article and Find Full Text PDFJ Mol Histol
September 2025
Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital/The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
Robinin (RB) is an accepted antioxidant herbal product with known cardio-protective activity. To explore the anti-oxidative potential of RB in treating myocardial ischemia or reperfusion (MI/RI) damage in rats after inducing hypercholesterolemia (HC). HC was induced by administering cholesterol (2%) to rats for eight weeks.
View Article and Find Full Text PDFCell Discov
September 2025
Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
Adverse intrauterine environments, such as hyperglycemia, impair sexual reproduction and species continuity, yet the underlying mechanisms remain poorly understood. In this study, we demonstrated that intrauterine hyperglycemia significantly disrupted primordial germ cell (PGC) development, especially in female offspring, thus reducing fertility. Using Oct4-EGFP transgenic mice with intrauterine hyperglycemia exposure, we revealed that hyperglycemia compromised sexually specific chromatin accessibility and DNA methylation reprogramming during PGC development.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Mediacal College, Beijing 100730, China.
Zhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, Xiamen Children's Hospital, Xiamen 361006, China.