A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Leveraging electronic health record documentation for Failure Mode and Effects Analysis team identification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Using Failure Mode and Effects Analysis (FMEA) as an example quality improvement approach, our objective was to evaluate whether secondary use of orders, forms, and notes recorded by the electronic health record (EHR) during daily practice can enhance the accuracy of process maps used to guide improvement. We examined discrepancies between expected and observed activities and individuals involved in a high-risk process and devised diagnostic measures for understanding discrepancies that may be used to inform quality improvement planning.

Methods: Inpatient cardiology unit staff developed a process map of discharge from the unit. We matched activities and providers identified on the process map to EHR data. Using four diagnostic measures, we analyzed discrepancies between expectation and observation.

Results: EHR data showed that 35% of activities were completed by unexpected providers, including providers from 12 categories not identified as part of the discharge workflow. The EHR also revealed sub-components of process activities not identified on the process map. Additional information from the EHR was used to revise the process map and show differences between expectation and observation.

Conclusion: Findings suggest EHR data may reveal gaps in process maps used for quality improvement and identify characteristics about workflow activities that can identify perspectives for inclusion in an FMEA. Organizations with access to EHR data may be able to leverage clinical documentation to enhance process maps used for quality improvement. While focused on FMEA protocols, findings from this study may be applicable to other quality activities that require process maps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391722PMC
http://dx.doi.org/10.1093/jamia/ocw083DOI Listing

Publication Analysis

Top Keywords

quality improvement
16
process maps
16
process map
16
ehr data
16
process
10
electronic health
8
health record
8
failure mode
8
mode effects
8
effects analysis
8

Similar Publications