Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030680PMC
http://dx.doi.org/10.1021/acs.chemrestox.6b00228DOI Listing

Publication Analysis

Top Keywords

nerve agents
16
genetic variants
12
bche
11
variants human
8
risk toxicity
8
agents pesticides
8
plasma bche
8
ache bche
8
toxicants higher
8
higher reactivity
8

Similar Publications

The therapeutic effects of various tonic traditional Chinese medicines on demyelinating diseases.

Metab Brain Dis

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China.

Demyelinating diseases, a prevalent group of neurological disorders, lead to impaired nerve conduction and sensorimotor dysfunctions. Despite existing treatments demonstrating some efficacy, their limitations have driven research toward exploring natural remedies. This review summarizes the therapeutic potential of four traditional tonic Chinese herbal medicines-ginsenosides, deer antler polypeptides, resveratrol, and ginkgo leaf extracts-for demyelinating diseases.

View Article and Find Full Text PDF

Background: Gynecologic enhanced recovery after surgery (ERAS) pathways have been developed to reduce postoperative narcotic use through multimodal pain management. While incisional injection of local anesthetic is standard practice, regional nerve blockades using liposomal agents are emerging as a promising adjunct technique for post-laparoscopy pain. Current data are conflicting regarding the benefits of regional nerve blocks on postoperative pain after laparoscopic hysterectomy.

View Article and Find Full Text PDF

Background: Though rare, sphenoid sinusitis can cause abducens nerve palsy because of the anatomical proximity of the sphenoid sinus and the abducens nerve.

Case Presentation: A male patient in his late seventies presented with double vision and left abducens nerve palsy. Imaging revealed sinus opacifications later identified as due to Scedosporium apiospermum, a rare fungal pathogen.

View Article and Find Full Text PDF

The therapeutic effects of vortioxetine on mood and cognition have been documented in major depressive disorder (MDD). This study aims to examine whether vortioxetine can improve brain glymphatic system function and connections among functional brain networks and to explore the underlying relationships among these changes. A total of 34 patients with MDD and 41 healthy controls (HCs) were recruited in the study.

View Article and Find Full Text PDF

mGlu2 Receptors in the Basal Ganglia: A New Frontier in Addiction Therapy.

Front Biosci (Landmark Ed)

August 2025

Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.

Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.

View Article and Find Full Text PDF