A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The temporal structure of the environment may influence range expansions during climate warming. | LitMetric

The temporal structure of the environment may influence range expansions during climate warming.

Glob Chang Biol

Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA.

Published: February 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the processes that influence range expansions during climate warming is paramount for predicting population extirpations and preparing for the arrival of non-native species. While climate warming occurs over a background of variation due to cyclical processes and irregular events, the temporal structure of the thermal environment is largely ignored when forecasting the dynamics of non-native species. Ecological theory predicts that high levels of temporal autocorrelation in the environment - relatedness between conditions occurring in close temporal proximity - will favor populations that would otherwise have an average negative growth rate by increasing the duration of favorable environmental periods. Here, we invoke such theory to explain the success of biological invasions and evaluate the hypothesis that sustained periods of high environmental temperature can act synergistically with increases in mean temperature to favor the establishment of non-native species. We conduct a 60-day field mesocosm experiment to measure the population dynamics of the non-native cladoceran zooplankter Daphnia lumholtzi and a native congener Daphnia pulex in ambient temperature environments (control), warmed with recurrent periods of high environmental temperatures (uncorrelated-warmed), or warmed with sustained periods of high environmental temperatures (autocorrelated-warmed), such that both warmed treatments exhibited the same mean temperature but exhibited different temporal structures of their thermal environments. Maximum D. lumholtzi densities in the warmed-autocorrelated treatment were threefold and eightfold higher relative to warmed-uncorrelated and control treatments, respectively. Yet, D. lumholtzi performed poorly across all experimental treatment(s) relative to D. pulex and were undetectable (by) the end of the experiment. Using mathematical models, we show that this increase in performance can occur alongside increasing temporal autocorrelation and should occur over a broad range of warming scenarios. These results provide both empirical and theoretical evidence that the temporal structure of the environment can influence the performance of species undergoing range expansions due to climate warming.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.13468DOI Listing

Publication Analysis

Top Keywords

climate warming
16
temporal structure
12
range expansions
12
expansions climate
12
non-native species
12
periods high
12
high environmental
12
structure environment
8
environment influence
8
influence range
8

Similar Publications