Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaf1343DOI Listing

Publication Analysis

Top Keywords

reverse osmosis
12
organic liquids
8
carbon molecular
8
molecular sieve
8
sieve membranes
8
osmosis molecular
4
molecular differentiation
4
organic
4
differentiation organic
4
liquids carbon
4

Similar Publications

Imaging techniques are important for biofilm studies. Biofilm samples should ideally be visualised with minimal sample preparation so as not to alter their original structure. However, this can be challenging and resource-intensive in most cases.

View Article and Find Full Text PDF

The growing global demand for clean and sustainable energy has intensified the development of novel technologies capable of harnessing naturally available resources. Among these, blue energy, referring to the power generated from the mixing of waters with different salinities, has emerged as a promising yet underutilized source. This perspective presents a comprehensive synthesis of recent advances in electrochemical harvesting systems, with a particular focus on Mixing Entropy Batteries (MEBs) as efficient, membrane-free devices for salinity gradient energy recovery.

View Article and Find Full Text PDF

In this study, we present a class of thin-film crosslinked (TFX) composite reverse osmosis (RO) membranes that resist physical compaction at ultrahigh pressures (up to 200 bar). Since RO membranes experience compaction at virtually all pressure ranges, the ability to resist compaction has widespread implications for RO membrane technology. The process described herein involves crosslinking a phase inverted porous polyimide (PI) support membrane followed by interfacial polymerization of a polyamide layer, thereby forming a fully thermoset composite membrane structure.

View Article and Find Full Text PDF

NDMA soft-sensors for potable reuse: A model development study.

Water Res

August 2025

Orange County Water District, 18700 Ward St, Fountain Valley, CA 92708, USA.

N-nitrosodimethylamine (NDMA) is a carcinogen of significant concern in potable water treatment but real-time monitoring of NDMA is not yet feasible with current analytical techniques or mechanistic models. Measuring NDMA and its precursors is time- and labor-intensive which often results in conservative, energy-intensive NDMA treatment approaches, such as operating UV at the maximum dose, to remove NDMA under all possible conditions. To reduce the energy required for NDMA treatment, data-driven modeling was used to simulate an NDMA soft sensor for real-time UV dose control.

View Article and Find Full Text PDF

The Pickersgill's reed frog, Hyperolius pickersgilli (Raw 1982), is an Endangered frog species endemic to a narrow central coastal region of KwaZulu-Natal, South Africa. The Johannesburg Zoo's Amphibian Research Project breeds H. pickersgilli for release to the wild.

View Article and Find Full Text PDF