98%
921
2 minutes
20
Anti-biofilm activity of three anthocyanidins (pelargonidin, cyanidin and delphinidin) was evaluated for the first time at in vitro conditions. All the compounds reduced the formation of Pseudomonas aeruginosa PAO1 biofilm at low sub-MIC (0.125 MIC) with delphinidin (c 56.25 μg/mL) being the most active (43%). In comparison, ampicillin (c 93.75 μg/mL) and streptomycin (c 21.25 μg/mL) (used as positive controls) were considerably less effective at the same sub-MIC (8 and 12%, respectively). Furthermore, at 0.5 MIC (c 225 μg/mL) this anthocyanidin molecule partly reduced the bacterial protrusions. However, no any of the aforementioned compounds inhibited the production of pyocyanin by the bacterial strain P. aeruginosa PAO1. Taken all together, the delphinidin scaffold could be taken into consideration for the design of the novel and more effective anti-biofilm agents inspired by the anthocyanidins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14786419.2016.1222386 | DOI Listing |
Nat Microbiol
September 2025
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
During early stages of biofilm formation, Pseudomonas aeruginosa (Pa) PAO1 can sense exopolysaccharide (EPS) trails of Psl deposited on a surface by previous Pa cells to detect trajectories of other cells and to orchestrate motility. This sensory signal is transduced into cyclic diGMP second messengers, but no known Psl receptors and adhesins participate in signal transduction. Here, using bacteria-secreted Psl trails, glycopolymer-patterned surfaces, longitudinal cell tracking, second messenger dual reporters and genetic mutations targeting EPS binding and surface twitching, we find that Pa is capable of sensing EPS directly through mutually constitutive interactions between type IV pili (T4P)-powered twitching and specific adhesin-EPS bonds.
View Article and Find Full Text PDFPseudomonas aeruginosa is a highly versatile bacterium capable of surviving and often thriving in stressful environmental conditions. Here we report the effect of two environmental conditions, temperature and growth phase, on the P. aeruginosa PAO1 transcriptome.
View Article and Find Full Text PDFInt J Food Microbiol
August 2025
Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China. Electronic address:
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that poses significant risks in food-related environments. Bacteriophages have emerged as a promising alternative strategy to control P.
View Article and Find Full Text PDFBiochem J
August 2025
Department of Biology, University of York, Wentworth Way, York, YO10 5DD, U.K.
Pseudomonas aeruginosa PA01 is one of the major causes of disease persistence and mortality in patients with lung pathologies, relying on various host metabolites as carbon and energy sources for growth. The ict-ich-ccl operon (pa0878, pa0882 and pa0883) in PAO1 is required for growth on the host molecule itaconate, a C5-dicarboxylate. However, it is not known how itaconate is taken up into P.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Toxicology, School of Public Health, Southern Medical University Guangzhou 510515 China
Rapid, low-cost trace inorganic Hg(ii) detection in environmental waters remains a critical public-health challenge. Here, we engineered into a naked-eye whole-cell biosensor by coupling a redesigned MerR-P element to the pyomelanin biosynthetic pathway. Three 4-hydroxyphenylpyruvate dioxygenase (HppD) homologs from WS, 4AK4, and PAO1 were codon-optimized and functionally screened.
View Article and Find Full Text PDF