Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The first three primary members of the non-benzenoid carbocyclic aromatic ion family, namely cyclopropenium, cyclopentadienide, and cycloheptatrienium (tropylium) ions, have planar cyclic structures with (4n+2)π electrons in fully conjugated systems. They fulfill Hückel's rule for aromaticity and hence possess extraordinary stability. Since the historic discovery of tropylium bromide in the late 19th Century, these non-benzenoid aromatic ions have attracted a lot of attention because of their unique combination of stability and reactivity. The charge on the aromatic ions makes them more prone to nucleophilic/electrophilic reactions than the neutral benzenoid counterparts. Within the last seven years, there has been a large number of investigations in utilizing aromatic ions to mediate organic reactions. This Review highlights these recent developments and discusses the potential of aromatic ions in promoting synthetically useful organic transformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201605979 | DOI Listing |