Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The conversion of solar energy into hydrogen fuel by splitting water into photoelectrochemical cells (PEC) is an appealing strategy to store energy and minimize the extensive use of fossil fuels. The key requirement for efficient water splitting is producing a large band bending (photovoltage) at the semiconductor to improve the separation of the photogenerated charge carriers. Therefore, an attractive method consists in creating internal electrical fields inside the PEC to render more favorable band bending for water splitting. Coupling ferroelectric materials exhibiting spontaneous polarization with visible light photoactive semiconductors can be a likely approach to getting higher photovoltage outputs. The spontaneous electric polarization tends to promote the desirable separation of photogenerated electron- hole pairs and can produce photovoltages higher than that obtained from a conventional p-n heterojunction. Herein, we demonstrate that a hole inversion layer induced by a ferroelectric Bi4V2O11 perovskite at the n-type BiVO4 interface creates a virtual p-n junction with high photovoltage, which is suitable for water splitting. The photovoltage output can be boosted by changing the polarization by doping the ferroelectric material with tungsten in order to produce the relatively large photovoltage of 1.39 V, decreasing the surface recombination and enhancing the photocurrent as much as 180%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977555PMC
http://dx.doi.org/10.1038/srep31406DOI Listing

Publication Analysis

Top Keywords

water splitting
16
hole inversion
8
inversion layer
8
band bending
8
separation photogenerated
8
photovoltage
6
water
5
splitting
5
layer bivo4/bi4v2o11
4
bivo4/bi4v2o11 interface
4

Similar Publications

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.

View Article and Find Full Text PDF

Recently, halide perovskite materials have attracted significant research interest in photoelectrochemical cells as promising photoabsorbers due to their superior optoelectronic properties. However, their instability under environmental conditions remains a major obstacle to the development of stable water-splitting devices. This review thoroughly examines the growing array of encapsulation strategies that have accelerated the integration of perovskite materials into water-splitting systems.

View Article and Find Full Text PDF

A novel electrocatalyst, zirconium ferrite nanoparticles (NPs) (ZrFeO NPs), was synthesized through coprecipitation and calcination processes at 300 °C and 500 °C using iron rust. The ZrFeO NPs were used as catalysts for the hydrogen evolution reaction. Furthermore, these NPs in an alkaline medium exhibited superior properties of a fractional order supercapacitor, based on which a prototype device was fabricated to demonstrate its energy storage applications.

View Article and Find Full Text PDF

Stimulating Efficiency for Proton Exchange Membrane Water Splitting Electrolyzers: From Material Design to Electrode Engineering.

Electrochem Energ Rev

September 2025

Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 Fujian China.

Unlabelled: Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for large-scale hydrogen production, yet their industrial deployment is hindered by the harsh acidic conditions and sluggish oxygen evolution reaction (OER) kinetics. This review provides a comprehensive analysis of recent advances in iridium-based electrocatalysts (IBEs), emphasizing novel optimization strategies to enhance both catalytic activity and durability. Specifically, we critically examine the mechanistic insights into OER under acidic conditions, revealing key degradation pathways of Ir species.

View Article and Find Full Text PDF

This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.

View Article and Find Full Text PDF