Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy.

J Biomed Opt

University of Cambridge, Department of Physics, JJ Thomson Avenue, Cambridge CB3 0HE, United KingdombUniversity of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom.

Published: August 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Barrett’s esophagus is a known precursor lesion to esophageal adenocarcinoma. In these patients, early detection of premalignant disease, known as dysplasia, allows curative minimally invasive endoscopic therapy, but is confounded by a lack of contrast in white light endoscopy. Imaging fluorescently labeled lectins applied topically to the tissue has the potential to more accurately delineate dysplasia, but tissue autofluorescence limits both sensitivity and contrast when operating in the visible region. To overcome this challenge, we synthesized near-infrared (NIR) fluorescent wheat germ agglutinin (WGA-IR800CW) and constructed a clinically translatable bimodal NIR and white light endoscope. Images of NIR and white light with a field of view of 63 deg and an image resolution of 182  μm are coregistered and the honeycomb artifact arising from the fiber bundle is removed. A minimum detectable concentration of 110 nM was determined using a dilution series of WGA-IR800CW. We demonstrated ex vivo that this system can distinguish between gastric and squamous tissue types in mouse stomachs (p=0.0005) and accurately detect WGA-IR800CW fluorescence in human esophageal resections (compared with a gold standard imaging system, rs>0.90). Based on these findings, future work will optimize the bimodal endoscopic system for clinical trials in Barrett’s surveillance.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.JBO.21.8.084001DOI Listing

Publication Analysis

Top Keywords

white light
12
nir white
8
design validation
4
validation near-infrared
4
near-infrared fluorescence
4
fluorescence endoscope
4
endoscope detection
4
detection early
4
early esophageal
4
esophageal malignancy
4

Similar Publications

Background: Non-Hispanic African Americans were reported to have a higher rate of heat-related death than non-Hispanic whites. It is not known whether this racial disparity varies among US regions.

Methods: Multiple cause of death data were used to tabulate heat-related death records which listed ICD-10 codes X30 (exposure to excessive natural heat), P81.

View Article and Find Full Text PDF

PurposeTo introduce, describe and validate a novel, 3D-printed portable slit lamp system integrated with a macro lens-equipped smartphone, providing clinicians with a quick, easy, and effective method for obtaining high-quality clinical images.Materials and MethodsA 3D-printed portable slit lamp was developed, comprising a warm white LED light pen housed in a custom case with a biconvex lens focusing light through a 0.4 mm slit.

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

Background: The white cell precursor (WPC) channel of the Sysmex XN-series hematology analyzer, which is designed for blast detection, showed reduced sensitivity for blast detection in leukopenic patients undergoing chemotherapy. This study aimed to evaluate the gating region for apoptotic blasts in the WPC scattergram to enhance detection sensitivity.

Methods: NOMO-1 cells, a human acute monoblastic leukemia cell line, were treated with varying concentrations of cytarabine (0, 100, 500, and 1,000 nM) for three days to induce apoptosis.

View Article and Find Full Text PDF