Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4921480PMC
http://dx.doi.org/10.3389/fpls.2016.00913DOI Listing

Publication Analysis

Top Keywords

flowering time
24
flowering
13
temperature
8
temperature elevated
8
elevated co2
8
flowering events
8
changing climate
8
ambient temperature
8
tissue temperature
8
time
7

Similar Publications

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

A new study shows that, as floral resources decline over the season, honey bees gradually increase their tolerance to attacks when foraging, a shift that may enable them to exploit other colonies' honey stores during robbing season.

View Article and Find Full Text PDF

Background: Allergic rhinitis and allergic asthma are respiratory tract diseases predominantly triggered by allergens such as pollens, house dust mite, mold etc. The prevalence of respiratory allergens varies according to geographic location. Ragweed (), a prevalent weed particularly in South America and Europe, is being investigated for its sensitization frequency in the Black Sea region of our country.

View Article and Find Full Text PDF

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF

Introduction: The white water lily (Nymphaea alba) is a traditional medicinal plant recognized for its diverse array of bioactive properties. However, its potential in wound healing remains largely unexplored. This study aimed to evaluate the phytochemical profile, cytotoxicity, and wound healing efficacy of Nymphaea alba flower extract (NAFE) using both in vitro and in vivo models, as well as computational network analysis.

View Article and Find Full Text PDF