A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Alternative splicing of interleukin-33 and type 2 inflammation in asthma. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Type 2 inflammation occurs in a large subgroup of asthmatics, and novel cytokine-directed therapies are being developed to treat this population. In mouse models, interleukin-33 (IL-33) activates lung resident innate lymphoid type 2 cells (ILC2s) to initiate airway type 2 inflammation. In human asthma, which is chronic and difficult to model, the role of IL-33 and the target cells responsible for persistent type 2 inflammation remain undefined. Full-length IL-33 is a nuclear protein and may function as an "alarmin" during cell death, a process that is uncommon in chronic stable asthma. We demonstrate a previously unidentified mechanism of IL-33 activity that involves alternative transcript splicing, which may operate in stable asthma. In human airway epithelial cells, alternative splicing of the IL-33 transcript is consistently present, and the deletion of exons 3 and 4 (Δ exon 3,4) confers cytoplasmic localization and facilitates extracellular secretion, while retaining signaling capacity. In nonexacerbating asthmatics, the expression of Δ exon 3,4 is strongly associated with airway type 2 inflammation, whereas full-length IL-33 is not. To further define the extracellular role of IL-33 in stable asthma, we sought to determine the cellular targets of its activity. Comprehensive flow cytometry and RNA sequencing of sputum cells suggest basophils and mast cells, not ILC2s, are the cellular sources of type 2 cytokines in chronic asthma. We conclude that IL-33 isoforms activate basophils and mast cells to drive type 2 inflammation in chronic stable asthma, and novel IL-33 inhibitors will need to block all biologically active isoforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978244PMC
http://dx.doi.org/10.1073/pnas.1601914113DOI Listing

Publication Analysis

Top Keywords

type inflammation
24
stable asthma
16
il-33
9
alternative splicing
8
type
8
cells ilc2s
8
airway type
8
role il-33
8
full-length il-33
8
chronic stable
8

Similar Publications