Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Information tagging and processing are vital in information-intensive applications, e.g., telecommunication and high-throughput drug screening. Magnetic suspension array technology may offer intrinsic advantages to screening applications by enabling high distinguishability, the ease of code generation, and the feasibility of fast code readout, though the practical applicability of magnetic suspension array technology remains hampered by the lack of quality administration of encoded microcarriers. Here, a logic-controlled microfluidic system enabling controlled synthesis of magnetic suspension arrays in multiphase flow networks is realized. The smart and compact system offers a practical solution for the quality administration and screening of encoded magnetic microcarriers and addresses the universal need of process control for synthesis in microfluidic networks, i.e., on-demand creation of droplet templates for high information capacity. The demonstration of magnetic suspension array technology enabled by magnetic in-flow cytometry opens the avenue toward point-of-care multiplexed bead-based assays, clinical diagnostics, and drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201601166DOI Listing

Publication Analysis

Top Keywords

magnetic suspension
20
suspension array
16
array technology
16
controlled synthesis
8
microfluidic networks
8
quality administration
8
magnetic
7
array
4
technology
4
technology controlled
4

Similar Publications

Bacterial infections continue to drive the need for more effective and rapid methods for bacterial analysis. To address this, magnetic nanoparticles (MNPs) have emerged as promising tools, especially when their surfaces are modified with bacteria binders. The bis-zinc-dipicolylamine (Zn-DPA) complex is known for its broad affinity to bacteria.

View Article and Find Full Text PDF

Understanding the molecular-level properties of pharmaceutical formulations is essential for optimizing drug dissolution, stability, and delivery performance. In recent years, the structural complexity of formulations has increased significantly, incorporating multiple functional excipients. In this context, NMR spectroscopy has emerged as a powerful tool for evaluating the physicochemical behavior of active pharmaceutical ingredients (APIs) and excipients across diverse formulation platforms.

View Article and Find Full Text PDF

This work analyzes the influence of the time-dependent clustering aggregation process on the transient and equilibrium magnetization of a monodisperse magnetic colloidal suspension under a uniform magnetic field Brownian dynamics simulations. The clustering aggregation process is characterized by microstructural properties, such as the nucleation-growth factor, 〈()〉, mean cluster size, 〈()〉, kinetic exponent, , effective radius, 〈〉, and radial distribution function, (). These are analyzed in terms of the volume fraction, , the dipolar coupling parameter, , and the Langevin parameter, .

View Article and Find Full Text PDF

Chemically induced murine colitis models are widely used to understand intestinal homeostasis and inflammatory responses during acute and chronic gut inflammation, such as inflammatory bowel disease (IBD). Resident populations of immune cells, together with those recruited during an inflammatory response, maintain intestinal immunity by mounting an effective immune response to enteropathogenic microbes while at the same time maintaining tolerance against commensals. To better understand the disease mechanism, studying different immune cell populations and their dynamic changes during infection and inflammation is essential.

View Article and Find Full Text PDF

Overexpression of αvβ3 integrin is found in a diverse group of tumors originating from glial cells in the brain, making this transmembrane receptor a promising biomarker for molecular MRI diagnosis. In the study, we conjugated a monoclonal antibody against the β3 subunit (CD61) of the αvβ3 integrin receptor with carbon-encapsulated iron nanoparticles to yield Fe@C-(CH)-CONH-anti-CD61 bioconjugates that were used in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). Wistar rats bearing C6 gliomas were injected as a single bolus (0.

View Article and Find Full Text PDF