A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel injectable chitosan thermosensitive hydrogel was designed as a target multi-effect scaffold for endogenous repair of the periodontium. The hydrogel complex was designed by embedding chitosan nanoparticles (CSn) loaded with bone morphogenetic protein-2 plasmid DNA (pDNA-BMP2) into a chitosan (CS)-based hydrogel with α,β-glycerophosphate (α,β-GP), termed CS/CSn(pDNA-BMP2)-GP. Characterization, the in vitro release profile for pDNA-BMP2, and cytocompatibility to human periodontal ligament cells (HPDLCs), were then conducted. The average diameter of the CSn(pDNA-BMP2) was 270.1 nm with a polydispersity index (PDI) of 0.486 and zeta potential of +27.0 mv. A DNase I protection assay showed that CSn could protect the pDNA-BMP2 from nuclease degradation. Encapsulation efficiency and loading capacity of CSn(pDNA-BMP2) were more than 80 and 30 %, respectively. The sol-gel transition time was only 3 min when CSn(pDNA-BMP2) was added into the CS/α,β-GP system. Scanning electron microscopy showed that CSn(pDNA-BMP2) was randomly dispersed in a network with regular holes and a porous structure. Weighting method showed the swelling ratio and degradation was faster in medium of pH 4.0 than pH 6.8. An in vitro pDNA-BMP2 release test showed that the cumulative release rate of pDNA-BMP2 was much slower from CS/CSn-GP than from CSn in identical release media. In release media with different pH, pDNA-BMP2 release was much slower at pH 6.8 than at pH 4.0. Three-dimensional culture with HPDLCs showed good cell proliferation and the Cell-Counting Kit-8 assay indicated improved cell growth with the addition of CSn(pDNA-BMP2) to CS/α,β-GP. In summary, the CS/CSn(pDNA-BMP2)-GP complex system exhibited excellent biological properties and cytocompatibility, indicating great potential as a gene delivery carrier and tissue regeneration scaffold for endogenous repair of the periodontium.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-016-5743-0DOI Listing

Publication Analysis

Top Keywords

thermosensitive hydrogel
8
chitosan nanoparticles
8
bone morphogenetic
8
morphogenetic protein-2
8
protein-2 plasmid
8
plasmid dna
8
scaffold endogenous
8
endogenous repair
8
repair periodontium
8
csnpdna-bmp2 cs/αβ-gp
8

Similar Publications