98%
921
2 minutes
20
Cytosolic phospholipase A alpha (cPLAα) plays a key role in signaling in mammalian cells by releasing arachidonic acid (AA) from glycerophospholipids (GPLs) but the factors determining the specificity of cPLAα for AA-containing GPLs are not well understood. Accordingly, we investigated those factors by determining the activity of human cPLAα towards a multitude of GPL species present in micelles or bilayers. Studies on isomeric PC sets containing a saturated acyl chain of 6 to 24 carbons in the sn1 or sn2 position in micelles showed an abrupt decrease in hydrolysis when the length of the sn1 or sn2 chain exceeded 17 carbons suggesting that the acyl binding cavity on the enzyme is of the corresponding length. Notably, the saturated isomer pairs were hydrolyzed identically in micelles as well as in bilayers suggesting promiscuous binding of acyl chains to the active site of cPLAα. Such promiscuous binding would explain the previous finding that cPLAα has both PLA and PLA activities. Interestingly, increasing the length of either the sn1 or sn2 acyl chain inhibited the hydrolysis in bilayers far more than that in micelles suggesting that with micelles (loosely packed) substrate accommodation at the active site of cPLAα is rate-limiting, while with bilayers (tightly packed) upward movement of the substrate from the bilayer (efflux) is the rate-limiting step. With the AA-containing PCs, the length of the saturated acyl chain also had a much stronger effect on hydrolysis in bilayers vs. micelles in agreement with this model. In contrast to saturated PCs, a marked isomer preference was observed for AA-containing PCs both in micelles and bilayers. In conclusion, these data significantly help to understand the mode of action and specificity of cPLAα.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2016.06.022 | DOI Listing |
Nat Metab
September 2025
Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA.
The essential cofactor coenzyme A (CoASH) and its thioester derivatives (acyl-CoAs) have pivotal roles in cellular metabolism. However, the mechanism by which different acyl-CoAs are accurately partitioned into different subcellular compartments to support site-specific reactions, and the physiological impact of such compartmentalization, remain poorly understood. Here, we report an optimized liquid chromatography-mass spectrometry-based pan-chain acyl-CoA extraction and profiling method that enables a robust detection of 33 cellular and 23 mitochondrial acyl-CoAs from cultured human cells.
View Article and Find Full Text PDFNeurosci Lett
September 2025
Institute of Neuroscience & Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; NHC Key Laboratory of Neurodegenerative Disease (University of South China), Hengyang 421001 Hunan, PR China; The Second Affiliated Hospital, Brain Disease Resea
Radiation-induced brain injury (RIBI) is a prevalent complication following radiotherapy for head and neck tumors, and its effective therapeutic strategies are lacking. Ferroptosis, an iron-dependent cell death, has recently emerged as an important mechanism of radiation-induced cell death. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuro-interventional technique with antioxidant and neuroprotective properties.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2025
Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1,
Cardiolipins (CLs) are primarily expressed in the inner mitochondrial membrane where they play essential roles in membrane architecture and mitochondrial functions. CLs have a unique structure characterized by four acyl chains with different stoichiometries such as chain length and degree of saturation. CL composition changes with disease and age, but it is largely unknown how dynamic changes affect mitochondrial function.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. El
Hypoxic-ischemic brain damage (HIBD) is a severe condition leading to extensive neuronal loss and functional impairments, representing a significant challenge in neonatal care. PFGA12, a peptide derived from fibrinogen alpha chain (FGA), which is notably downregulated in the umbilical cord blood of hypoxic-ischemic encephalopathy (HIE) infants. We demonstrate that PFGA12 significantly enhances cell viability and mitigates oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cell death.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
Endothelial-to-mesenchymal transition (EndMT) is a critical contributor of renal fibrosis in diabetic kidney disease (DKD). Asiatic acid (AA), a natural triterpenoid compound, exhibits notable endothelial protective and anti-fibrotic properties; however, its impact on EndMT in DKD remains unclear. This study aimed to investigate the therapeutic effect of AA against EndMT in DKD and the underlying mechanisms.
View Article and Find Full Text PDF