A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Semiquantitative dynamic contrast-enhanced MRI for accurate classification of complex adnexal masses. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To identify the best dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) descriptive parameters in predicting malignancy of complex ovarian masses, and develop an optimal decision tree for accurate classification of benign and malignant complex ovarian masses.

Materials And Methods: Preoperative DCE-MR images of 55 sonographically indeterminate ovarian masses (27 benign and 28 malignant) were analyzed prospectively. Four descriptive parameters of the dynamic curve, namely, time-to-peak (TTP), wash-in-rate (WIR), relative signal intensity (SI ), and the initial area under the curve (IAUC ) were calculated on the normalized curves of specified regions-of-interest (ROIs). A two-tailed Student's t-test and two automated classifiers, linear discriminant analysis (LDA) and support vector machines (SVMs), were used to compare the performance of the mentioned parameters individually and in combination with each other.

Results: TTP (P = 6.15E-8) and WIR (P = 5.65E-5) parameters induced the highest sensitivity (89% for LDA, and 97% for SVM) and specificity (93% for LDA, and 100% for SVM), respectively. Regarding the high sensitivity of TTP and high specificity of WIR and through their combination, an accurate and simple decision-tree classifier was designed using the line equation obtained by LDA classification model. The proposed classifier achieved an accuracy of 89% and area under the ROC curve of 93%.

Conclusion: In this study an accurate decision-tree classifier based on a combination of TTP and WIR parameters was proposed, which provides a clinically flexible framework to aid radiologists/clinicians to reach a conclusive preoperative diagnosis and patient-specific therapy plan for distinguishing malignant from benign complex ovarian masses.

Level Of Evidence: 2 J. Magn. Reson. Imaging 2017;45:418-427.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.25359DOI Listing

Publication Analysis

Top Keywords

complex ovarian
12
dynamic contrast-enhanced
8
accurate classification
8
descriptive parameters
8
ovarian masses
8
benign malignant
8
decision-tree classifier
8
parameters
5
semiquantitative dynamic
4
contrast-enhanced mri
4

Similar Publications