A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Involvement of Oct4 in the pathogenesis of thoracic aortic dissection via inducing the dedifferentiated phenotype of human aortic smooth muscle cells by directly upregulating KLF5. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To investigate the expression of Oct4 in human thoracic aortic dissection (TAD) and the regulation mechanisms of Oct4 on phenotype transition of human aortic smooth muscle cells (HASMCs).

Methods: Aortic samples from TAD patients (n = 12) and organ donors (n = 6) were collected. qRT-PCR, western blot, and immunohistochemistry were performed to identify Oct4 expression in aortic media. Immunofluorescence was performed to analyze Oct4 expression in primary HASMCs. Oct4A and Oct4B isoforms were detected. Gain-of-function experiments were performed to determine the effects of Oct4 on HASMC phenotype transition. Chromatin immunoprecipitation, luciferase assay, and rescue experiments were performed to analyze mechanisms of Oct4 on HASMC phenotype transition.

Results: Oct4 expression levels, especially the Oct4A isoform, were significantly higher in TAD patients compared with normal controls. Notably, Oct4 presented a strong and strict nuclear localization in primary HASMCs of TAD patients but a mild and diffuse distribution in both cytoplasm and nucleus in the control group. Overexpression of Oct4 induced dedifferentiation of HASMCs characterized by decreased contractile proteins and elevated migration capability. Krüppel-like factor 5 (KLF5) was found to be a directly regulated target gene of Oct4 in HASMCs. Furthermore, downregulation of KLF5 significantly alleviated the effects of Oct4 on phenotype transition of HASMCs.

Conclusions: Oct4 expression was significantly upregulated in aortic tissues and primary HASMCs of TAD patients. The increased Oct4 induced phenotype transition of HASMCs from the contractile type to the synthetic type by directly upregulating KLF5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2016.05.036DOI Listing

Publication Analysis

Top Keywords

phenotype transition
16
tad patients
16
oct4 expression
16
oct4
13
primary hasmcs
12
thoracic aortic
8
aortic dissection
8
human aortic
8
aortic smooth
8
smooth muscle
8

Similar Publications