Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatic fibrosis is a reversible process involving plenty of transcription factors and pathways. Vitamin D receptor (VDR) as a member of ligand-induced transcription factors can interact with 9-cis retinoid X receptor (RXR) and VDR-interacting repressor (VDIR) to mediate transactivation or transrepression in the absence or in the presence of VDR ligand to regulate the expression of VDR target genes. The active form of vitamin D [1α,25(OH)2D3] can downregulate the expression of type I collagen both α1 and α2 (COLIα1 and COLIα2) in hepatic stellate cells (HSC-T6) in a time-dependent fashion, which provides a new direction for hepatic fibrosis therapy. As one of VDR target genes, rat COLIα1 gene contains 1αnVDRE (E-box1 and E-box2) in its promoter, and unliganded VDR/RXR may bind to 1αnVDRE through VDIR to mediate transactivation, whereas liganded VDR/RXR may bind to 1αnVDRE through VDIR for transrepression. The results suggested a sort of relying on each other relationship between VDR/RXR and VDIR in regulating the expression of COLIα1 gene in HSC-T6 cells, which established VDR as a potential target for blocking and even reversing hepatic fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2016.3367DOI Listing

Publication Analysis

Top Keywords

hepatic fibrosis
12
vitamin receptor
8
expression type
8
type collagen
8
collagen α1
8
transcription factors
8
vdir mediate
8
mediate transactivation
8
vdr target
8
target genes
8

Similar Publications

Simple scoring model for predicting overt hepatic encephalopathy in geriatric cirrhosis: A multicenter retrospective cohort study.

Metab Brain Dis

September 2025

Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, 1-1 Yanagido, 501-1194, Japan.

Identifying the risk of overt hepatic encephalopathy (OHE) in geriatric patients with cirrhosis remains challenging. This study aimed to investigate the independent factors for OHE development in geriatric cirrhosis and to establish a simple scoring model to identify individuals at risk for OHE. We conducted a retrospective review of geriatric patients with cirrhosis aged ≥ 80 years who were admitted between April 2006 and November 2022.

View Article and Find Full Text PDF

Over the past few decades, liver disease has emerged as one of the leading causes of death worldwide. Liver injury is frequently associated with infections, alcohol consumption, or obesity, which trigger hepatic inflammation and ultimately lead to progressive fibrosis and carcinoma. Although various cell populations contribute to inflammatory and fibrogenic processes in the liver, macrophages serve as a pivotal mediator.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a rising health issue linked to poor diet and gut microbiota dysbiosis. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, high in polyphenols and anti-inflammatory nutrients, may help protect against MASLD. This study examined how adherence to the MIND diet relates to MASLD severity, focusing on hepatic steatosis, fibrosis, insulin resistance, inflammation, and gut microbiota diversity.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.

View Article and Find Full Text PDF