98%
921
2 minutes
20
Sulindac has anti-neoplastic properties against colorectal cancers; however, its use as a chemopreventive agent has been limited due to toxicity and efficacy concerns. Combinatorial treatment of colorectal cancers has been attempted to maximize anti-cancer efficacy with minimal side effects by administrating NSAIDs in combination with other inhibitory compounds or drugs such as l-ascorbic acid (vitamin C), which is known to exhibit cytotoxicity towards various cancer cells at high concentrations. In this study, we evaluated a combinatorial strategy utilizing sulindac and vitamin C. The death of HCT116 cells upon combination therapy occurred via a p53-mediated mechanism. The combination therapeutic resistance developed in isogenic p53 null HCT116 cells and siRNA-mediated p53 knockdown HCT116 cells, but the exogenous expression of p53 in p53 null isogenic cells resulted in the induction of cell death. In addition, we investigated an increased level of intracellular ROS (reactive oxygen species), which was preceded by p53 activation. The expression level of PUMA (p53-upregulated modulator of apoptosis), but not Bim, was significantly increased in HCT116 cells in response to the combination treatment. Taken together, our results demonstrate that combination therapy with sulindac and vitamin C could be a novel anti-cancer therapeutic strategy for p53 wild type colon cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2016.06.019 | DOI Listing |
RSC Med Chem
September 2025
College of Pharmacy, Guangxi Innovation Center of Zhuang Yao Medicine, Guangxi University of Chinese Medicine Nanning 530200 P. R. of China
Challenges in cancer treatment lie in the identification and development of novel agents with potent anti-tumor activity. A series of novel dehydroabietylamine-pyrimidine derivatives 3a-3s were designed and synthesized based on the principles of molecular hybridization. The inhibitory activities of the target compounds against the proliferation of four different human cancer cell lines (HepG2, A549, HCT116 and MCF-7) were evaluated.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Colorectal Surgery, The Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China.
Objective: To investigate the anticancer effects and underlying mechanisms of 8-nitrotryptanthrin (8-Nitrotryp) against colorectal cancer (CRC).
Methods: The effects of 8-Nitrotryp on proliferation, colony formation, and migration were evaluated in HCT116 and SW480 cells, with comparisons to its parent compound tryptanthrin (Tryp). Mitochondrial membrane potential (MMP) was assessed using JC-1 staining, and early apoptosis was analyzed by flow cytometry.
Carbohydr Polym
November 2025
College of Food Science, Shihezi University, Shihezi 832003, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Traditional Chinese Dough Processing, Tianjin 300203, China; Gulbali Institute-Agriculture Water
Extracellular polysaccharides (EPS) from Pediococcus pentosaceus were obtained, followed by investigation of their structural and functional properties. Current results indicated the polysaccharides belonged to glucomannans, which mainly consisted of mannose and glucose with a molecular weight of 2248.71 kDa.
View Article and Find Full Text PDFMol Divers
September 2025
Department of General Practice, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing Three Gorges Medical College, No. 27, Guoben Road, Wanzhou District, Chongqing, 404197, China.
Dendrobium officinale Kimura et Migo (DO) has demonstrated potential anti-colon adenocarcinoma (COAD) effects; however, its underlying mechanisms of action require further elucidation. In this study, DO (work concentrations of 0, 0.1, and 0.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova St, 119334 Moscow, Russian Federation.
4,4-Difluoro-4-bora-3,4-diaza--indacene systems (BODIPY) are widely investigated fluorophores. The BODIPY core allows for introducing substituents at different positions. Taking advantage of the versatile properties of carborane cages for the modification of photoactive compounds, we developed the synthesis of carborane-substituted BODIPYs.
View Article and Find Full Text PDF