Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

Hypertension

From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)

Published: August 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07694DOI Listing

Publication Analysis

Top Keywords

heart failure
20
smooth muscle
16
notch3 signaling
12
muscle cells
12
pressure overload
12
vascular smooth
8
early fatal
8
fatal acute
8
heart
6
hypertension
6

Similar Publications

Coronary periarteritis in IgG4-RD: A case series.

Clin Rheumatol

September 2025

Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55906, USA.

Objectives: IgG4-related disease (IgG4-RD) can affect multiple organ systems, with coronary artery involvement being rare. Coronary periarteritis may lead to complications such as myocardial infarction and ischemic cardiomyopathy. This case series characterizes the clinical and radiological features, complications, and treatment strategies in patients with IgG4-RD-associated coronary periarteritis.

View Article and Find Full Text PDF

Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage.

View Article and Find Full Text PDF

As a key mitochondrial Ca transporter, NCLX regulates intracellular Ca signalling and vital mitochondrial processes. The importance of NCLX in cardiac and nervous-system physiology is reflected by acute heart failure and neurodegenerative disorders caused by its malfunction. Despite substantial advances in the field, the transport mechanisms of NCLX remain unclear.

View Article and Find Full Text PDF

Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.

View Article and Find Full Text PDF

Introduction: Breathlessness is a common cause of hospital admission globally and is associated with high mortality, particularly in low-income countries. In sub-Saharan Africa, there is a paucity of data on breathlessness, with existing data focused on individual diseases. There is a need for patient-centred approaches to understand interactions between multiple conditions to address population needs and inform health system responses.

View Article and Find Full Text PDF