A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Towards Identifying and Reducing the Bias of Disease Information Extracted from Search Engine Data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The estimation of disease prevalence in online search engine data (e.g., Google Flu Trends (GFT)) has received a considerable amount of scholarly and public attention in recent years. While the utility of search engine data for disease surveillance has been demonstrated, the scientific community still seeks ways to identify and reduce biases that are embedded in search engine data. The primary goal of this study is to explore new ways of improving the accuracy of disease prevalence estimations by combining traditional disease data with search engine data. A novel method, Biased Sentinel Hospital-based Area Disease Estimation (B-SHADE), is introduced to reduce search engine data bias from a geographical perspective. To monitor search trends on Hand, Foot and Mouth Disease (HFMD) in Guangdong Province, China, we tested our approach by selecting 11 keywords from the Baidu index platform, a Chinese big data analyst similar to GFT. The correlation between the number of real cases and the composite index was 0.8. After decomposing the composite index at the city level, we found that only 10 cities presented a correlation of close to 0.8 or higher. These cities were found to be more stable with respect to search volume, and they were selected as sample cities in order to estimate the search volume of the entire province. After the estimation, the correlation improved from 0.8 to 0.864. After fitting the revised search volume with historical cases, the mean absolute error was 11.19% lower than it was when the original search volume and historical cases were combined. To our knowledge, this is the first study to reduce search engine data bias levels through the use of rigorous spatial sampling strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894584PMC
http://dx.doi.org/10.1371/journal.pcbi.1004876DOI Listing

Publication Analysis

Top Keywords

search engine
28
engine data
28
search volume
16
search
12
data
9
disease prevalence
8
reduce search
8
data bias
8
volume historical
8
historical cases
8

Similar Publications