Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ∼90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ∼25%.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4948599DOI Listing

Publication Analysis

Top Keywords

generator high-power
8
based gas
8
gas discharge
8
discharge hollow
8
hollow cathode
8
autonomous portable
4
portable pulsed-periodical
4
pulsed-periodical generator
4
high-power radiofrequency-pulses
4
radiofrequency-pulses based
4

Similar Publications

Perovskite-silicon tandem solar cells have attracted considerable attention owing to their high power conversion efficiency (PCE), which exceeds the limits of single-junction devices. This study focused on lead-free tin-based perovskites with iodine-bromine mixed anions. Bromide perovskites have a wide bandgap; therefore, they are promising light absorbers for perovskite-silicon tandem solar cells.

View Article and Find Full Text PDF

Lanthanum-Induced Gradient Fields in Asymmetric Heterointerface Catalysts for Enhanced Oxygen Electrocatalysis.

Adv Mater

September 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

Metal-nitrogen-carbon (M-N-C) catalysts display considerable potential as cost-effective alternatives to noble metals in oxygen electrocatalysis. However, uncontrolled atomic migration and random structural rearrangement during pyrolysis often lead to disordered coordination environments and sparse active sites, fundamentally limiting their intrinsic catalytic activities and long-term durability. Herein, a novel strategy is reported for use in directionally regulating atomic migration pathways via the incorporation of a foreign metal (La).

View Article and Find Full Text PDF

Atomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO remain critical challenges for commercialization.

View Article and Find Full Text PDF

Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.

View Article and Find Full Text PDF

Gene-environment (GxE) interactions crucially contribute to complex phenotypes. The statistical power of a GxE interaction study is limited mainly due to weak GxE interaction effect sizes. Joint tests of the main genetic and GxE effects for a univariate phenotype were proposed to utilize the individually weak GxE effects to improve the discovery of associated genetic loci.

View Article and Find Full Text PDF