Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The single nucleotide polymorphism rs9939609 of the gene FTO, which encodes fat mass and obesity-associated protein, is strongly associated with obesity and type 2 diabetes (T2D) in multiple populations; however, the underlying mechanism of this association is unclear. The present study aimed to investigate FTO genotype-dependent metabolic changes in obesity and T2D. To elucidate metabolic dysregulation associated with disease risk genotype, genomic and metabolomic datasets were recruited from 2,577 participants of the Korean Association REsource (KARE) cohort, including 40 homozygous carriers of the FTO risk allele (AA), 570 heterozygous carriers (AT), and 1,967 participants carrying no risk allele (TT). A total of 134 serum metabolites were quantified using a targeted metabolomics approach. Through comparison of various statistical methods, seven metabolites were identified that are significantly altered in obesity and T2D based on the FTO risk allele (adjusted p < 0.05). These identified metabolites are relevant to phosphatidylcholine metabolic pathway, and previously reported to be metabolic markers of obesity and T2D. In conclusion, using metabolomics with the information from genome-wide association studies revealed significantly altered metabolites depending on the FTO genotype in complex disorders. This study may contribute to a better understanding of the biological mechanisms linking obesity and T2D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889059 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156612 | PLOS |