Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937564PMC
http://dx.doi.org/10.1101/gr.204420.116DOI Listing

Publication Analysis

Top Keywords

gene
14
gene repertoire
12
genome evolution
12
gene losses
12
gene duplications
12
genome
9
architecture gene
8
genome history
8
single evolutionary
8
evolutionary framework
8

Similar Publications

Mycobacteria ( family) comprise five genera (, , , , and ), which include relevant animal and human pathogens. Histology is a rapid method for preemptively diagnosing mycobacteriosis, contributing to surveillance, control, and eradication. A constraint on histology is the limited sensitivity and specificity of acid-fast stains, as the number of detectable bacilli in formalin-fixed paraffin-embedded (FFPE) tissue varies and other microorganisms are acid-fast positive.

View Article and Find Full Text PDF

Background: The emergence of drug-resistant pathogens has stimulated the need for the development of new antimicrobial agents. Epigenetic modulation by suppressing epigenetic inhibitors, such as 5-azacytidine (5-aza), has been shown to activate silent biosynthetic gene clusters within a fungus and causes the production of novel secondary metabolites. This research examined this epigenetic modification strategy in the poorly studied filamentous fungus, Ceratorhiza hydrophila, which may help induce the additional production of bioactive compounds.

View Article and Find Full Text PDF

Fighting for every beat: cardiac therapies in Duchenne muscular dystrophy.

Skelet Muscle

September 2025

Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.

Duchenne muscular dystrophy (DMD) is a severe, progressive genetic disorder caused by mutations in the DMD gene, resulting in the absence of dystrophin-a key structural protein at the sarcolemma. As the disease progresses, cardiac involvement becomes a leading cause of morbidity and mortality. By adolescence or early adulthood, many patients develop dilated cardiomyopathy and arrhythmias.

View Article and Find Full Text PDF

Background: Polygenic risk scores (PRS) are not yet standard in clinical risk assessments for familial breast cancer in Sweden. This study evaluated the distribution and impact of an established PRS (PRS) in women undergoing clinical sequencing for hereditary breast cancer.

Findings: We integrated PRS into a hereditary breast cancer gene panel used in clinical practice and calculated scores for 262 women.

View Article and Find Full Text PDF