98%
921
2 minutes
20
Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931827 | PMC |
http://dx.doi.org/10.18632/aging.100970 | DOI Listing |
Nature
February 2017
Section on Integrative Physiology &Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA.
Adipose tissue is a major site of energy storage and has a role in the regulation of metabolism through the release of adipokines. Here we show that mice with an adipose-tissue-specific knockout of the microRNA (miRNA)-processing enzyme Dicer (ADicerKO), as well as humans with lipodystrophy, exhibit a substantial decrease in levels of circulating exosomal miRNAs. Transplantation of both white and brown adipose tissue-brown especially-into ADicerKO mice restores the level of numerous circulating miRNAs that are associated with an improvement in glucose tolerance and a reduction in hepatic Fgf21 mRNA and circulating FGF21.
View Article and Find Full Text PDFAging (Albany NY)
June 2016
Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR.
View Article and Find Full Text PDF