Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets.

Drug Resist Updat

Experimental and Clinical Research Center, Charité Universitätsmedizin, Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; German Cancer Consortium, Germany. Electronic address:

Published: May 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The increasing unraveling of the molecular basis of cancer offers manifold novel options for intervention strategies. However, the discovery and development of new drugs for potential clinical applications is a tremendously time-consuming and costly process. Translating a novel lead candidate compound into an approved clinical drug takes often more than a decade, and the success rate is very low due to versatile efforts including defining its pharmacokinetics, pharmacodynamics, side effects as well as lack of sufficient efficacy. Thus, strategies are needed to minimize time and costs, while maximizing success rates. A very attractive strategy for novel cancer therapeutic options is the repositioning of already approved drugs. These medicines, approved for the treatment of non-malignant disorders, have already passed some early costs and time, have been tested in humans and are ready for clinical trials as anti-cancer drugs. Here we discuss the repositioning of nonsteroidal anti-inflammatory drugs (NSAID), statins, anti-psychotic drugs, anti-helminthic drugs and vitamin D as anti-tumor agents. We focus on their novel actions and potential for inhibition of cancer growth and metastasis by interfering with target molecules and pathways, which drive these malignant processes. Furthermore, important pre-clinical and clinical data are reviewed herein, which elucidate their therapeutic mechanisms which enable their repositioning for cancer therapy and disruption of metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drup.2016.03.002DOI Listing

Publication Analysis

Top Keywords

drugs
7
repositioning
4
repositioning drugs
4
drugs intervention
4
intervention tumor
4
tumor progression
4
progression metastasis
4
metastasis drugs
4
drugs targets
4
targets increasing
4

Similar Publications

Background: Poor recovery of active glenohumeral external rotation (aGHER) after brachial plexus birth injury (BPBI) is common. Late spinal accessory nerve to infraspinatus motor branch (SAN-IS) transfer has been reported as effective. We investigated its efficacy in children over 4 years with BPBI.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Anti-inflammatory and immunomodulatory effect of purslane and turmeric in rheumatoid arthritis rat models.

Cell Mol Biol (Noisy-le-grand)

September 2025

Department of Chemistry, Faculty of Science and Health, Koya University, Koya, KOY45, Kurdistan Region, Iraq.

Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by joint inflammation. Given the side effects of conventional treatments, this study focuses on the anti-inflammatory effects of purslane (Portulaca oleracea) and turmeric (Curcuma longa). The research is driven by the growing demand for plant based-treatment for safer therapeutic options for RA management.

View Article and Find Full Text PDF