Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although Runx2 is involved in the regulation of cellular differentiation, its physiological roles in the differentiation of uterine stromal cells during decidualization still remain unknown. The aim of this study was to examine the expression, regulation and function of Runx2 in mouse uterus during decidualization. The results showed that Runx2 was highly expressed in the decidua and oil-induced decidualized cells. In the uterine stromal cells, recombinant human Runx2 (rRunx2) could induce the expression of Prl8a2 and Prl3c1 which are two well-known differentiation markers for decidualization, while inhibition of Runx2 with specific siRNA reduced their expression. Further study found that rRunx2 could improve the expression of Prl8a2 and Prl3c1 in the C/EBPβ siRNA-transfected stromal cells. In the stromal cells, cAMP analogue 8-Br-cAMP could induce the expression of Runx2. Moreover, the induction was blocked by PKA inhibitor H89. Simultaneously, attenuation of C/EBPβ with siRNA could also reduce the cAMP-induced Runx2 expression. Furthermore, siRNA-mediated silencing of Runx2 expression alleviated the effects of cAMP on the differentiation of stromal cells. Runx2 might act downstream of C/EBPβ to regulate the expression of Cox-2, Vegf and Mmp9 in the uterine stromal cells. Collectively, Runx2 may play an important role during mouse decidualization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-016-2412-zDOI Listing

Publication Analysis

Top Keywords

stromal cells
28
uterine stromal
16
runx2
11
downstream c/ebpβ
8
c/ebpβ regulate
8
differentiation uterine
8
cells
8
expression
8
induce expression
8
expression prl8a2
8

Similar Publications

Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.

View Article and Find Full Text PDF

Objective: Progesterone (PG) and its target, progesterone receptor (PGR), are important regulators in inflammatory diseases. This study aimed to investigate the specific role of PG in periodontitis and to elucidate the underlying mechanisms involving PGR.

Methods: Women with periodontitis, including 250 with PG deficiency, 250 with PG supplementation, and 245 controls (normal PG) were enrolled.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF

Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are effective for treating various orthopedic conditions and are widely used clinically. However, their therapeutic efficacy is limited in osteoporosis patients. Iron overload represents a key risk factor for osteoporosis, inducing ferroptosis and suppressing the osteogenic differentiation of bone marrow stromal cells (BMSCs).

View Article and Find Full Text PDF