98%
921
2 minutes
20
The role of HIF-2α in hepatocellular carcinoma (HCC) is unclear. The aim of the present study was to investigate the expression pattern and role of HIF-2α in HCC patients. Immunohistochemical staining and western blotting analyses were applied to detect the protein level of HIF-2α in 206 paired HCC and peritumoral tissues. Kaplan-Meier survival and Cox proportional hazard regression analyses were performed to identify risk factors for overall survival and recurrence-free survival in these patients. The function of HIF-2α was studied in HCC cells and in vivo models. We found that the protein levels of HIF-2α in HCC tissues were lower than in peritumoral tissues, and were negatively correlated with tumor size (P < 0.05). Kaplan-Meier survival and univariate analysis revealed that HCC patients with high HIF-2α protein levels had longer overall survival (P < 0.05). Over-expression of HIF-2α induced apoptosis in HCC cells and increased the levels of pro-apoptotic proteins, Bak, ZBP-89 and PDCD4, whereas the inhibition of HIF-2α expression achieved opposite results. The findings were confirmed in a mouse HCC xenograft model. In conclusion, our study revealed that HIF-2α was decreased and played an anti-tumorigenic role in HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085177 | PMC |
http://dx.doi.org/10.18632/oncotarget.8952 | DOI Listing |
Blood
March 2018
Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation.
View Article and Find Full Text PDF