Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Styrene oxidation mediated by a Mo-based mesoporous catalyst can yield selectively styrene oxide or benzaldehyde. Kinetic data evidenced that styrene oxide is the initial single-product formed by the catalytic Mo-mediated process. However, after some hours of reaction benzaldehyde yield rises while that of the epoxide decreases concomitantly. The mechanistic proposal pointed to a surface assisted acid-base mechanism by which styrene oxide is interconverted into benzaldehyde through over-oxidation and cleavage of the C-C bond and releases formaldehyde as well. In an attempt to gain some insight into whether this mechanistic proposal is realistic we have conducted a combined DRIFT and inelastic neutron scattering (INS) study to assess the adsorbed species at the catalyst's surface and confirm the mechanistic proposal. INS and DRIFT provided complementary insight into surface-adsorbed species by probing donor (INS) and acceptor (DRIFT) species. INS also allowed for an estimation of product selectivity by means of a Job method stressing the power of the technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp01243d | DOI Listing |