Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481).

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0192415X16500270DOI Listing

Publication Analysis

Top Keywords

functional connectivity
24
working memory
20
individuals subjective
16
subjective cognitive
16
cognitive impairment
16
memory performance
16
gray matter
16
matter volume
16
volume functional
16
connectivity dmn
12

Similar Publications

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

Bridging electrostatic screening and ion transport in lithium salt-doped ionic liquids.

J Chem Phys

September 2025

Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.

Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.

View Article and Find Full Text PDF

We develop the theory justifying the application of the density-based basis-set correction (DBBSC) method to double-hybrid approximations in order to accelerate their basis convergence. We show that, for the one-parameter double hybrids based on the adiabatic connection, the exact dependence of the basis-set correction functional on the coupling-constant parameter λ involves a uniform coordinate scaling by a factor 1/λ of the density and of the basis functions. Neglecting this uniform coordinate scaling corresponds essentially to the recent work of Mester and Kállay, J.

View Article and Find Full Text PDF

Accurately modeling volume-dependent properties of water remains a challenge for density functional theory (DFT), with widely used functionals failing to reproduce key features of the water density isobar, including its shape, density, and temperature of the density maximum. Here, we compare the performance of the RPBE-D3 and vdW-DF-cx functionals using replica exchange molecular dynamics (MD) driven by machine-learned force fields. Our simulations reveal that vdW-DF-cx predicts the water density more accurately than RPBE-D3 and reproduces the isobar closely between 307 and 340 K.

View Article and Find Full Text PDF