98%
921
2 minutes
20
Background: Atherosclerosis is characterized by lipid accumulation and chronic inflammation in the arterial wall. Elevated levels of apolipoprotein (apo) B-containing lipoproteins are a risk factor for cardiovascular disease (CVD). By contrast, plasma levels of functional high-density lipoprotein (HDL) and apoA-I are protective against CVD by enhancing reverse cholesterol transport (RCT). Activation of peroxisome proliferator-activated receptor-α (PPARα), a ligand-activated transcription factor, controls lipid metabolism, cellular cholesterol trafficking in macrophages and influences inflammation.
Objective: To study whether pharmacological activation of PPARα with a novel highly potent and selective PPARα modulator, pemafibrate, improves lipid metabolism, macrophage cholesterol efflux, inflammation and consequently atherosclerosis development in vitro and in vivo using human apolipoprotein E2 Knock-In (apoE2KI) and human apoA-I transgenic (hapoA-I tg) mice.
Approach And Results: Pemafibrate treatment decreases apoB secretion in chylomicrons by polarized Caco-2/TC7 intestinal epithelium cells and reduces triglyceride levels in apoE2KI mice. Pemafibrate treatment of hapoA-I tg mice increases plasma HDL cholesterol, apoA-I and stimulates RCT to feces. In primary human macrophages, pemafibrate promotes macrophage cholesterol efflux to HDL and exerts anti-inflammatory activities. Pemafibrate also reduces markers of inflammation and macrophages in the aortic crosses as well as aortic atherosclerotic lesion burden in western diet-fed apoE2KI mice.
Conclusions: These results demonstrate that the novel selective PPARα modulator pemafibrate exerts beneficial effects on lipid metabolism, RCT and inflammation resulting in anti-atherogenic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.003 | DOI Listing |
J Physiol
October 2020
LANEH, School of Life Sciences, East China Normal University, Shanghai, China.