98%
921
2 minutes
20
Objective: Hypercapnia resulting from protective ventilation in acute respiratory distress syndrome triggers metabolic pH compensation, which is not entirely characterized. We aimed to describe this metabolic compensation.
Methods: The data were retrieved from a prospective collected database. Variables from patients' admission and from hypercapnia installation until the third day after installation were gathered. Forty-one patients with acute respiratory distress syndrome were analyzed, including twenty-six with persistent hypercapnia (PaCO2 > 50mmHg > 24 hours) and 15 non-hypercapnic (control group). An acid-base quantitative physicochemical approach was used for the analysis.
Results: The mean ages in the hypercapnic and control groups were 48 ± 18 years and 44 ± 14 years, respectively. After the induction of hypercapnia, pH markedly decreased and gradually improved in the ensuing 72 hours, consistent with increases in the standard base excess. The metabolic acid-base adaptation occurred because of decreases in the serum lactate and strong ion gap and increases in the inorganic apparent strong ion difference. Furthermore, the elevation in the inorganic apparent strong ion difference occurred due to slight increases in serum sodium, magnesium, potassium and calcium. Serum chloride did not decrease for up to 72 hours after the initiation of hypercapnia.
Conclusion: In this explanatory study, the results indicate that metabolic acid-base adaptation, which is triggered by acute persistent hypercapnia in patients with acute respiratory distress syndrome, is complex. Furthermore, further rapid increases in the standard base excess of hypercapnic patients involve decreases in serum lactate and unmeasured anions and increases in the inorganic apparent strong ion difference by means of slight increases in serum sodium, magnesium, calcium, and potassium. Serum chloride is not reduced.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828087 | PMC |
http://dx.doi.org/10.5935/0103-507X.20160009 | DOI Listing |
BMC Glob Public Health
September 2025
Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya.
Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).
Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.
BMC Pulm Med
September 2025
Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, 23845, Germany.
Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.
View Article and Find Full Text PDFInt J Emerg Med
September 2025
Department of Anesthesia, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
Am J Emerg Med
September 2025
University of South Carolina School of Medicine - Greenville, Greenville, SC, USA.
Total laryngectomy (TLE) results in the permanent separation of the respiratory and digestive tracts, requiring all airway interventions to occur exclusively via a neck stoma. Although airway obstruction in post-laryngectomy patients is uncommon, it can rapidly become fatal without prompt recognition and understanding of the altered anatomy. Here, we report the case of a patient with a recent TLE for squamous cell carcinoma, who presented to a rural Emergency Department (ED) in acute respiratory distress.
View Article and Find Full Text PDFZhonghua Jie He He Hu Xi Za Zhi
September 2025
Department of Pulmonary & Critical Care Medicine, West China Hospital, Sichuan University,Chengdu 600041, China.
Severe pneumonia is a common clinical respiratory disease that is frequently managed by physicians in the Department of Pulmonary and Critical Care Medicine (PCCM). The development of acute respiratory distress syndrome (ARDS) and sepsis are critical factors that contribute to the disease progression and a poor prognosis in severe pneumonia patients. As a key focus in the diagnosis and treatment of critical illnesses, the management of severe pneumonia leverages the strengths of the discipline for pulmonary and critical care physicians.
View Article and Find Full Text PDF