A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An experimental platform using human intestinal epithelial cell lines to differentiate between hazardous and non-hazardous proteins. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human intestinal epithelial cell lines (T84, Caco-2, and HCT-8) grown on permeable Transwell™ filters serve as models of the gastrointestinal barrier. In this study, this in vitro model system was evaluated for effectiveness at distinguishing between hazardous and non-hazardous proteins. Indicators of cytotoxicity (LDH release, MTT conversion), monolayer barrier integrity ([(3)H]-inulin flux, horseradish peroxidase flux, trans-epithelial electrical resistance [TEER]), and inflammation (IL-8, IL-6 release) were monitored following exposure to hazardous or non-hazardous proteins. The hazardous proteins examined include streptolysin O (from Streptococcus pyogenes), Clostridium difficile Toxins A and B, heat-labile toxin from enterotoxigenic Escherichia coli, listeriolysin O (from Listeria monocytogenes), melittin (from bee venom), and mastoparan (from wasp venom). Non-hazardous proteins included bovine and porcine serum albumin, bovine fibronectin, and ribulose bisphosphate carboxylase/oxygenase (RuBisco) from spinach. Food allergenic proteins bovine milk β-lactoglobulin and peanut Ara h 2 were also tested as was the anti-nutritive food protein wheat germ agglutinin. Results demonstrated that this model system effectively distinguished between hazardous and non-hazardous proteins through combined analysis of multiple cells lines and assays. This experimental strategy may represent a useful adjunct to multi-component analysis of proteins with unknown hazard profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2016.04.003DOI Listing

Publication Analysis

Top Keywords

non-hazardous proteins
20
hazardous non-hazardous
16
human intestinal
8
intestinal epithelial
8
epithelial cell
8
cell lines
8
proteins
8
model system
8
hazardous
5
non-hazardous
5

Similar Publications