A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Accuracy and robustness of a simple algorithm to measure vessel diameter from B-mode ultrasound images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Measurement of changes in arterial vessel diameter can be used to assess the state of cardiovascular health, but the use of such measurements as biomarkers is contingent upon the accuracy and robustness of the measurement. This work presents a simple algorithm for measuring diameter from B-mode images derived from vascular ultrasound. The algorithm is based upon Gaussian curve fitting and a Viterbi search process. We assessed the accuracy of the algorithm by measuring the diameter of a digital reference object (DRO) and ultrasound-derived images of a carotid artery. We also assessed the robustness of the algorithm by manipulating the quality of the image. Across a broad range of signal-to-noise ratio and with varying image edge error, the algorithm measured vessel diameter within 0.7% of the creation dimensions of the DRO. This was a similar level of difference (0.8%) to when an ultrasound image was used. When SNR dropped to 18 dB, measurement error increased to 1.3%. When edge position was varied by as much as 10%, measurement error was well maintained between 0.68 and 0.75%. All these errors fall well within the margin of error established by the medical physics community for quantitative ultrasound measurements. We conclude that this simple algorithm provides consistent and accurate measurement of lumen diameter from B-mode images across a broad range of image quality.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00355.2015DOI Listing

Publication Analysis

Top Keywords

simple algorithm
12
vessel diameter
12
diameter b-mode
12
accuracy robustness
8
algorithm measuring
8
measuring diameter
8
b-mode images
8
broad range
8
measurement error
8
algorithm
7

Similar Publications