Time-course changes in the expression levels of miR-122, -155, and -21 as markers of liver cell damage, inflammation, and regeneration in acetaminophen-induced liver injury in rats.

J Vet Sci

Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.; Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.; Department of Pathology, Asan Medical Center, University o

Published: March 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug-induced liver injury (DILI) is a significant threat to patient health and a major concern during drug development. Recently, multiple circulating microRNAs (miRNAs) have been reported to be potential biomarkers for DILI. To adapt and validate miRNAs for clinical use, we investigated the time-course changes in miR-122 expression levels in an acetaminophen-induced liver injury model in rats. In addition, miR-155 and miR-21 were evaluated as makers of inflammation and regeneration, respectively, to characterize liver status. Our results revealed that miR-122 is an early and sensitive biomarker of hepatocellular injury at a stage when alanine transaminase, aspartate transaminase, and total bilirubin were not detectable. However, no significant differences in the expression levels of other miRNAs (miR-155 and -21) were observed between treatment and vehicle groups. Collectively, these time-course changes in the expression levels of miRNAs may be useful as markers for clinical decision-making, in the diagnosis and treatment of DILI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808643PMC
http://dx.doi.org/10.4142/jvs.2016.17.1.45DOI Listing

Publication Analysis

Top Keywords

expression levels
16
time-course changes
12
liver injury
12
changes expression
8
inflammation regeneration
8
acetaminophen-induced liver
8
levels mirnas
8
liver
5
expression
4
levels
4

Similar Publications

Selenium is an essential trace element in many organisms but becomes toxic at elevated concentrations. At moderately increased, non-lethal levels, selenite triggers both selenium utilization and stress responses in microorganisms. However, the thresholds of such responses in archaea remain poorly understood.

View Article and Find Full Text PDF

It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

SIRT1 modulation and lipid profile alterations in the cellular regulation of blood lipids in renal disorders among extremely obese individuals.

Cell Mol Biol (Noisy-le-grand)

September 2025

University Sousse, Faculty of Medicine "Ibn El-Jazzar", Department of Medical Genetics, Sousse, Tunisia.

The global epidemic of overweight and obesity is closely linked to the development of chronic kidney disease (CKD), with extremely obese individuals facing a particularly high risk. This study aimed to assess the relationship between lipid profile levels, SIRT1 expression, and RNA-34a-5P in the regulation of blood lipid levels among severely obese individuals with renal diseases. Conducted over six months in three specialized hospitals, the study included 100 participants divided into two groups: 50 obese individuals with renal diseases and 50 obese controls without renal problems.

View Article and Find Full Text PDF

Hypoxia Aggravates Myocardial Ischemia/Reperfusion Injury Through the Promotion of Ferroptosis via ACSL4 Lactylation.

J Cardiovasc Transl Res

September 2025

Department of Cardiology, Bei'an Hospital, Beidahuang Group, Heihe, 164000, Heilongjiang Province, China.

Myocardial ischemia/reperfusion injury (MIRI) worsens ischemic damage, with ferroptosis as a key mediator of this iron-dependent cell death. Lactylation, a novel epigenetic modification, remains poorly understood in MIRI-associated ferroptosis. This study aimed to elucidate the mechanistic link between lactylation and ferroptosis in MIRI.

View Article and Find Full Text PDF