Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green's function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green's function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green's function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.6b00178DOI Listing

Publication Analysis

Top Keywords

green's function
16
grid points
12
realistic systems
8
cubic spline
8
spline interpolation
8
grid
8
matsubara frequency
8
frequency grid
8
order magnitude
8
green's
5

Similar Publications

Molecular switches and real-time ion sensing in pyridinium circuits a single-molecule STM-break junction.

Nanoscale Horiz

September 2025

Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, 9170022, Chile.

The functional electronic and spectro-electrochemical properties of two structural pyridinium isomers, Py_Down-BF and Py_Up-BF, were studied at the single-molecule level using the STM-BJ technique. These isomers differ in the position of the redox-active pyridinium core. The aim was to identify the role of core's position in promoting reversible switching between electromers (redox isomers) in solution and at the gold-pyridinium-gold junction circuit.

View Article and Find Full Text PDF

Introduction: Microorganisms can have major impacts on the success of NASA's missions, including the integrity of materials, the protection of extraterrestrial environments, the reliability of scientific results, and maintenance of crew health. Robust cleaning and sterilization protocols for spacecraft and associated environments are currently in place in NASA facilities, but microbial contamination should be further controlled and its impact on NASA's missions and science must be minimized. To address this, air and surfaces across cleanrooms and uncontrolled spaces at the Marshall Space Flight Center were sampled and microbial burden and diversity were analyzed.

View Article and Find Full Text PDF

Two-Dimensional MGeSe: Promising Photovoltaic Materials with Long Carrier Lifetime and High Photocurrent.

J Phys Chem Lett

September 2025

State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, China.

Two-dimensional (2D) group III-IV-VI semiconductors show great potential for application in energy conversion fields. Herein, using density functional theory (DFT) calculations in conjunction with nonadiabatic molecular dynamics (NAMD) simulations and the nonequilibrium Green's function (NEGF) method, the photovoltaic performance of MGeSe (M = Ga and In) monolayers is systematically investigated. The MGeSe monolayers exhibit direct band gap semiconductor characteristics with strong optical absorption in the visible light region.

View Article and Find Full Text PDF

We investigate the transport properties of a two-dimensional Su-Schrieffer-Heeger (2D SSH) model in the quantum Hall regime using non-equilibrium Green's function formalism (NEGF). The device Hamiltonian, where the 2D SSH model serves as the channel, is constructed using a nearest-neighbor tight-binding model. The effect of an external perpendicular magnetic field is incorporated into the contacts via Peierls substitution.

View Article and Find Full Text PDF

Miniaturized implantable optoelectronic technologies for in vivo biomedical applications are gaining interest, but require strict thermal management for safe operation. Here, we introduce a comprehensive framework combining analytical solutions and numerical modeling to estimate and manage thermal effects of optoelectronic devices. We propose Green's functions to analytically solve temperature distributions in tissue from a point source with coupled thermal-optical power, capturing the influence of critical tissue properties and spatiotemporal parameters.

View Article and Find Full Text PDF