Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeting angiogenesis is considered a promising therapy for cancer. Besides curtailing soluble factor mediated tumor angiogenesis, understanding the unexplored regulation of angiogenesis by mechanical cues may lead to the identification of novel therapeutic targets. We have recently shown that expression and activity of mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) is suppressed in tumor endothelial cells and restoring TRPV4 expression or activation induces vascular normalization and improves cancer therapy. However, the molecular mechanism(s) by which TRPV4 modulates angiogenesis are still in their infancy. To explore how TRPV4 regulates angiogenesis, we have employed TRPV4 null endothelial cells (TRPV4KO EC) and TRPV4KO mice. We found that absence of TRPV4 (TRPV4KO EC) resulted in a significant increase in proliferation, migration, and abnormal tube formation in vitro when compared to WT EC. Concomitantly, sprouting angiogenesis ex vivo and vascular growth in vivo was enhanced in TRPV4KO mice. Mechanistically, we observed that loss of TRPV4 leads to a significant increase in basal Rho activity in TRPV4KO EC that corresponded to their aberrant mechanosensitivity on varying stiffness ECM gels. Importantly, pharmacological inhibition of the Rho/Rho kinase pathway by Y-27632 normalized abnormal mechanosensitivity and angiogenesis exhibited by TRPV4KO EC in vitro. Finally, Y-27632 treatment increased pericyte coverage and in conjunction with Cisplatin, significantly reduced tumor growth in TRPV4KO mice. Taken together, these data suggest that TRPV4 regulates angiogenesis endogenously via modulation of EC mechanosensitivity through the Rho/Rho kinase pathway and can serve as a potential therapeutic target for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041949PMC
http://dx.doi.org/10.18632/oncotarget.8405DOI Listing

Publication Analysis

Top Keywords

rho/rho kinase
12
kinase pathway
12
trpv4ko mice
12
trpv4
9
angiogenesis
9
tumor angiogenesis
8
endothelial cells
8
cancer therapy
8
trpv4 regulates
8
regulates angiogenesis
8

Similar Publications

Activating angiogenic and immunomodulatory potential of stem cells through optimized cultivation strategies presents significant opportunities for cell-based tissue therapeutics. Among others, hydrogels with tunable chemo-mechanical properties offer optimal 3D environments for stem cell functions. Here, we report rigidity sensing and mechanoresponses of mesenchymal stem cells (MSC) in 3D hydrogels drive therapeutic effects in ischemic injury.

View Article and Find Full Text PDF

TNIK Regulates Cytoskeletal Organization to Promote Focal Adhesion Turnover and Mitosis in Lung Adenocarcinoma.

Front Biosci (Landmark Ed)

May 2025

Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, China.

Background: Lung cancer is the primary cause of cancer-related mortality, but the molecular mechanisms behind this malignancy remain unclear.

Methods: The Cancer Genome Atlas (TCGA) online database and tissue chips were used to analyze the expression levels of tumor necrosis factor receptor-associated factor 2 (TRAF2)- and non-catalytic region of tyrosine kinase adaptor protein (NCK)- interacting kinase (TNIK) protein in lung cancer. A549 and PC-9 lung adenocarcinoma (LUAD) cells with stable TNIK knockdown were generated by lentivirus infection.

View Article and Find Full Text PDF

Aims: Our objective is to assess the therapeutic impact of HEC on OAB rats and investigate potential mechanisms.

Background: Overactive bladder (OAB) is a syndrome of urinary storage symptoms characterized by "urinary urgency with or without urinary acute incontinence, usually accompanied by increased daytime and nocturnal urination", which impacts patients' quality of life. We found the potential therapeutic impact of HuangE capsules (HEC) on OAB patients through clinical practice.

View Article and Find Full Text PDF

The formidable contractile tension exerted by cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinoma (PDAC) tissue is crucial for maintaining high tissue solid stress (TSS), which impedes the delivery and penetration of chemotherapeutic drugs. To address this obstacle, we constructed a pH-responsive nanotension relief agent (FS@MMS), in which fasudil (FS) was ingeniously conjugated to mesoporous silica encapsulated with magnetic iron oxide (MMS). The nanotension relief agent was demonstrated to inhibit the synthesis of phosphorylated myosin light chain by blocking the Rho/Rho-associated serine/threonine kinase (ROCK) pathway, triggering the swift transformation of high-tension CAFs into low-tension CAFs in PDAC tissue, which relieves TSS and enhances drug penetration in Panc02/NIH-3T3 multicellular tumor spheroids.

View Article and Find Full Text PDF

Tauopathy is one of the pathological features of Alzheimer's disease and related dementias (ADRD). At present, there have been many studies on the formation, deposition, and intercellular transmission of tau in neurons and immune cells. The vasculature is an important component of the central nervous system.

View Article and Find Full Text PDF