98%
921
2 minutes
20
Key Points: The median raphe is a key subcortical modulatory centre involved in several brain functions, such as regulation of the sleep-wake cycle, emotions and memory storage. A large proportion of median raphe neurones are glutamatergic and implement a radically different mode of communication compared to serotonergic cells, although their in vivo activity is unknown. We provide the first description of the in vivo, brain state-dependent firing properties of median raphe glutamatergic neurones identified by immunopositivity for the vesicular glutamate transporter type 3 (VGluT3) and serotonin (5-HT). Glutamatergic populations (VGluT3+/5-HT- and VGluT3+/5-HT+) were compared with the purely serotonergic (VGluT3-/5-HT+ and VGluT3-/5-HT-) neurones. VGluT3+/5-HT+ neurones fired similar to VGluT3-/5-HT+ cells, whereas they significantly diverged from the VGluT3+/5-HT- population. Activity of the latter subgroup resembled the spiking of VGluT3-/5-HT- cells, except for their diverging response to sensory stimulation. The VGluT3+ population of the median raphe may broadcast rapidly varying signals on top of a state-dependent, tonic modulation.
Abstract: Subcortical modulation is crucial for information processing in the cerebral cortex. Besides the canonical neuromodulators, glutamate has recently been identified as a key cotransmitter of numerous monoaminergic projections. In the median raphe, a pure glutamatergic neurone population projecting to limbic areas was also discovered with a possibly novel, yet undetermined function. In the present study, we report the first functional description of the vesicular glutamate transporter type 3 (VGluT3)-expressing median raphe neurones. Because there is no appropriate genetic marker for the separation of serotonergic (5-HT+) and non-serotonergic (5-HT-) VGluT3+ neurones, we utilized immunohistochemistry after recording and juxtacellular labelling in anaesthetized rats. VGluT3+/5-HT- neurones fired faster, more variably and were permanently activated during sensory stimulation, as opposed to the transient response of the slow firing VGluT3-/5-HT+ subgroup. VGluT3+/5-HT- cells were also more active during hippocampal theta. In addition, the VGluT3-/5-HT- population, comprising putative GABAergic cells, resembled the firing of VGluT3+/5-HT- neurones but without any significant reaction to the sensory stimulus. Interestingly, the VGluT3+/5-HT+ group, spiking slower than the VGluT3+/5-HT- population, exhibited a mixed response (i.e. the initial transient activation was followed by a sustained elevation of firing). Phase coupling to hippocampal and prefrontal slow oscillations was found in VGluT3+/5-HT- neurones, also differentiating them from the VGluT3+/5-HT+ subpopulation. Taken together, glutamatergic neurones in the median raphe may implement multiple, highly divergent forms of modulation in parallel: a slow, tonic mode interrupted by sensory-evoked rapid transients, as well as a fast one capable of conveying complex patterns influenced by sensory inputs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929318 | PMC |
http://dx.doi.org/10.1113/JP272036 | DOI Listing |
Ophthalmic Plast Reconstr Surg
September 2025
Purpose: During endoscopic endonasal access to small intraconal masses deep in the orbital apex, a line of fusion between inferior and medial recti is encountered distal to the termination of the common tendinous ring. The intraoperatively viewed length of this segment has not been quantified. To assist clinical recognition of this structure, our study quantifies its length and proposes the standardized nomenclature term of inferomedial extraocular muscle raphe (IM-EOMR).
View Article and Find Full Text PDFCureus
August 2025
Service of Neurology, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BRA.
Transcranial sonography (TCS) is widely acknowledged as a frontline imaging tool in movement disorder practice, particularly for separating idiopathic Parkinson's disease from its many mimics. In recent years, however, investigators have extended its reach, showing that the same portable probe can also capture structural and hemodynamic signatures of neuropsychiatric disorders and the major dementia syndromes. Across neuropsychiatry, a dim ("hypoechoic") median raphe emerges as the sonographic hallmark of serotonergic imbalance: it recurs in major depressive disorder, bipolar depression, and panic disorder, predicts better response to selective serotonin reuptake inhibitors, and even foreshadows post-stroke depression.
View Article and Find Full Text PDFJ Sex Med
August 2025
Department of Urology, Mayo Clinic, Rochester, MN 55905, United States.
Background: Multiple guideline-based surgical treatment options for Peyronie's disease (PD) exist, including penile plication and plaque incision or excision and grafting. Surgical incision type may differ depending upon location and severity of curve, planned concomitant procedures, and surgeon preference.
Aim: To evaluate postoperative wound complications comparing outcomes between ventral and subcoronal incisions in patients undergoing tunica albuginea plication (TAP) and plaque incision or partial excision and grafting (PG) for PD.
Dermatol Pract Concept
July 2025
Ambulatorio di Dermatologia Pediatrica, Centro di Medicina Mestre Venezia, Italy.
Front Neuroanat
July 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.
Huntingtin-associated protein 1 (HAP1) is a crucial component of the stigmoid body (STB) and is recognized as a neuroprotective interactor with causative proteins for several neurodegenerative disorders (NDs). Due to HAP1 protectivity, brain regions rich in STB/HAP1 are typically shielded from neurodegeneration, whereas areas with little or no STB/HAP1 are often affected in NDs. Mounting evidence suggests that serotonin (5-HT) neuron dysfunction contributes to various NDs.
View Article and Find Full Text PDF