A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model. | LitMetric

Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model.

Cell Rep

Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; Center for Genetic

Published: March 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bipolar disorder, also known as manic-depressive illness, causes swings in mood and activity levels at irregular intervals. Such changes are difficult to predict, and their molecular basis remains unknown. Here, we use infradian (longer than a day) cyclic activity levels in αCaMKII (Camk2a) mutant mice as a proxy for such mood-associated changes. We report that gene-expression patterns in the hippocampal dentate gyrus could retrospectively predict whether the mice were in a state of high or low locomotor activity (LA). Expression of a subset of circadian genes, as well as levels of cAMP and pCREB, possible upstream regulators of circadian genes, were correlated with LA states, suggesting that the intrinsic molecular circuitry changes concomitant with infradian oscillatory LA. Taken together, these findings shed light onto the molecular basis of how irregular biological rhythms and behavior are controlled by the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2016.02.067DOI Listing

Publication Analysis

Top Keywords

activity levels
8
molecular basis
8
circadian genes
8
circadian gene
4
gene circuitry
4
circuitry predicts
4
predicts hyperactive
4
hyperactive behavior
4
behavior mood
4
mood disorder
4

Similar Publications