Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To identify long noncoding RNAs (lncRNAs), including long intergenic noncoding RNAs (lincRNAs), antisense RNAs, and pseudogenes, associated with the inflammatory response in human primary osteoarthritis (OA) chondrocytes and to explore their expression and function in OA.

Methods: OA cartilage was obtained from patients with hip or knee OA following joint replacement surgery. Non-OA cartilage was obtained from postmortem donors and patients with fracture of the neck of the femur. Primary OA chondrocytes were isolated by collagenase digestion. LncRNA expression analysis was performed by RNA sequencing (RNAseq) and quantitative reverse transcriptase-polymerase chain reaction. Modulation of lncRNA chondrocyte expression was achieved using LNA longRNA GapmeRs (Exiqon). Cytokine production was measured with Luminex.

Results: RNAseq identified 983 lncRNAs in primary human hip OA chondrocytes, 183 of which had not previously been identified. Following interleukin-1β (IL-1β) stimulation, we identified 125 lincRNAs that were differentially expressed. The lincRNA p50-associated cyclooxygenase 2-extragenic RNA (PACER) and 2 novel chondrocyte inflammation-associated lincRNAs (CILinc01 and CILinc02) were differentially expressed in both knee and hip OA cartilage compared to non-OA cartilage. In primary OA chondrocytes, these lincRNAs were rapidly and transiently induced in response to multiple proinflammatory cytokines. Knockdown of CILinc01 and CILinc02 expression in human chondrocytes significantly enhanced the IL-1-stimulated secretion of proinflammatory cytokines.

Conclusion: The inflammatory response in human OA chondrocytes is associated with widespread changes in the profile of lncRNAs, including PACER, CILinc01, and CILinc02. Differential expression of CILinc01 and CIinc02 in hip and knee OA cartilage, and their role in modulating cytokine production during the chondrocyte inflammatory response, suggest that they may play an important role in mediating inflammation-driven cartilage degeneration in OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950001PMC
http://dx.doi.org/10.1002/art.39520DOI Listing

Publication Analysis

Top Keywords

inflammatory response
16
noncoding rnas
12
differentially expressed
12
cilinc01 cilinc02
12
long intergenic
8
intergenic noncoding
8
chondrocyte inflammatory
8
lncrnas including
8
response human
8
hip knee
8

Similar Publications

Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Autoimmune nodopathies: emerging insights and clinical implications.

Curr Opin Neurol

October 2025

Neuromuscular Diseases Unit, Department of Neurology, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, CIBERER, Barcelona, Spain.

Purpose Of Review: Autoimmune nodopathies (AN) are a recognized distinct group of immune-mediated peripheral neuropathies with unique immunopathological features and therapeutic implications. This review synthesizes recent advances in their pathogenesis, diagnosis, and management, which have refined their clinical classification and informed targeted treatment strategies.

Recent Findings: AN are characterized by autoantibodies targeting surface proteins in the nodal-paranodal area (anti-contactin-1, anti-contactin-associated protein 1, anti-neurofascin-155, anti-pan-neurofascin), predominantly of IgG4 subclass.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Expanded senescent CD8 T-cells in IMID patients are associated with distinct inflammatory cytokines.

Clin Exp Immunol

September 2025

Rheumatology Department, Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), CEA , FHU CARE, Le Kremlin Bicêtre, France.

Introduction: Immunosenescence remodels immune functions and was first described with aging. It is present in 25% of cancer patients but has also been described in patients with Immune-mediated inflammatory diseases (IMIDs). This study aims at quantifying cells exhibiting a phenotype of senescence in CD4+ (T4sen) and CD8+ (T8sen) T cells, analyzing its potential drivers and the effect of anti-TNF treatment in a prospective cohort of patients with rheumatoid arthritis (RA), spondyloarthritis (SpA) and Sjögren disease (SjD).

View Article and Find Full Text PDF

Esophageal cancer is a major cause of cancer-related death, often preceded with chronic inflammation and injuries. The NFκB/IKKβ pathway plays a central role in inflammation, yet its role in early esophageal carcinogenesis remains unclear. This study investigated the role of epithelial IKKβ in early esophageal carcinogenesis.

View Article and Find Full Text PDF